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Abstract

Let F be an algebraically closed field of characteristic zero and G be a finite cyclic group. In

this work, all the F -algebras are assumed to be associative. Given finite dimensional G-simple

F -algebras A1, . . . , Am, taken as graded subalgebras of matrix algebras with some elementary

gradings, consider the upper block triangular matrix algebra A := (UT (A1, . . . , Am), α̃) en-

dowed with an elementary G-grading induced by a map α̃ (defined by gluing the gradings of

the Ai’s). In this thesis, we approach two main topics: the factoring property related to the

TG-ideal IdG(A) of the G-graded polynomial identities satisfied by A and the minimal vari-

eties of associative G-graded PI-algebras over F , of finite basic rank, with respect to a given

G-exponent.

More precisely, we prove that any finite dimensional G-simple F -algebra, previously de-

scribed by Bahturin, Sehgal and Zaicev (for any arbitrary group), can be seen, for cyclic groups,

as a graded subalgebra of a matrix algebra endowed with an elementary grading. Moreover, if

G is a cyclic p-group, with p being an arbitrary prime, we establish that IdG(A) is factorable if,

and only if, there exists at most one index i ∈ {1, . . . ,m} such that Ai is not G-regular if, and

only if, there exists a unique isomorphism class of G-gradings for A. This is a generalization of

the results presented by Avelar, Di Vincenzo and da Silva, when G has order 2, which already

contrasted with the ordinary case, investigated by Giambruno and Zaicev. It is worth highlight-

ing that we use different techniques from those employed in such cases. Still, by generalizing

the concept of G-regularity, we introduce the definition of α-regularity and we establish nice

connections between such concept and the so-called invariance subgroups. Finally, when G is

not necessarily a p-group, we present necessary and sufficient conditions in order to obtain that

IdG((UT (A1, A2), α̃)) is factorable, by requiring that A1 and A2 are α1-regular and α2-regular,

respectively.

Regarding the minimal varieties, we prove that they are generated by suitable G-graded

upper block triangular matrix algebras (UT (A1, . . . , Am), α̃). On the other hand, by assuming

some conditions over these algebras, we show that the varieties generated by some of them are

minimal. These problems was explored, in ordinary case, by Giambruno and Zaicev, and, when

G is of prime order, by Di Vincenzo, da Silva and Spinelli.
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Resumo estendido

Nas últimas décadas, o estudo das álgebras satisfazendo identidades polinomiais, nomeada-

mente PI-álgebras, tem se desenvolvido em grande escala. Existe um número crescente de

pesquisas envolvendo tais álgebras, o que explicita a importância dessa teoria no âmbito

matemático. Nesse sentido, os resultados apresentados nesta tese contribuem significativamente

com os trabalhos na área de álgebra e, particularmente, com aqueles relativos às PI-álgebras. É

importante ressaltar que esses resultados foram desenvolvidos em um trabalho conjunto com a

minha orientadora de doutorado, Professora Viviane Ribeiro Tomaz da Silva, e com o Professor

Onofrio Mario Di Vincenzo (Università degli Studi della Basilicata - Itália).

Seja F um corpo algebricamente fechado de caracteŕıstica zero e considere G um grupo

ćıclico finito. Ao longo deste trabalho, todas as F -álgebras são assumidas como associativas.

Dedicamos a primeira parte desta tese ao estudo da propriedade de fatorabilidade associada

aos TG-ideais de identidades polinomiais G-graduadas satisfeitas por álgebras de matrizes bloco

triangulares superiores G-graduadas UTG(A1, . . . , Am), onde A1, . . . , Am são álgebras G-simples

de dimensão finita sobre F . Nossos resultados obtidos neste parte já foram publicados e podem

ser encontrados em [22].

Em segundo lugar, o presente trabalho é devotado a explorar as variedades de PI-álgebras

associativas G-graduadas, de posto finito. Mais precisamente, propomos descrever aquelas va-

riedades que são minimais, de um dado G-expoente, por meio de álgebras geradoras adequadas

relacionadas às álgebras de matrizes bloco triangulares superiores. Por outro lado, impondo

algumas condições extras sobre UTG(A1, . . . , Am), provamos que tais álgebras de matrizes bloco

triangulares superiores G-graduadas geram variedades minimais. Os resultados obtidos nesta

parte se encontram no artigo [31] submetido para publicação.

Neste resumo, damos as principais definições relacionadas à PI-teoria, bem como as notações

que serão utilizadas ao longo deste texto. Contextualizamos os tópicos abordados, dando mais

detalhes sobre nossos principais objetivos e suas relevâncias, e discutimos sobre as ferramen-

tas de estudo empregadas. Finalizamos este resumo listando os assuntos abordados em cada

caṕıtulo desta tese.
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Seja A uma álgebra associativa sobre um corpo F de caracteŕıstica zero e seja G um grupo

abeliano finito. Dizemos que A é uma álgebra G-graduada se A = ⊕g∈GAg (soma direta como

espaço vetorial), onde, para cada g ∈ G, Ag é um subespaço vetorial de A, e AgAh ⊆ Agh,

para todo g, h ∈ G. Cada subespaço Ag é chamado uma componente graduada de grau g de A.

Além disso, um elemento a ∈ Ag é dito ser homogêneo de grau g e o seu grau é denotado por

|a|A. Quando a álgebra graduada A é unitária e todos os seus elementos homogêneos não-nulos

são invert́ıveis, dizemos que A é uma álgebra de divisão graduada. Uma subálgebra (subespaço

vetorial, ideal, respectivamente) V de uma álgebra G-graduada A que admite a decomposição

V =
⊕

g∈G(V ∩ Ag) é chamada uma subálgebra graduada (subespaço vetorial graduado, ideal

graduado, respectivamente) de A. É notória a relevância das álgebras graduadas nas pesquisas

dos últimos 20 anos (veja, por exemplo, [1, 5, 9, 10, 29, 32]). Ainda, dadas duas álgebras

graduadas A = ⊕g∈GAg e B = ⊕g∈GBg, se existe um isomorfismo de álgebras φ : A → B tal

que φ(Ag) = Bg, para todo g ∈ G, então dizemos que A é G-isomorfa à B, em outras palavras,

A e B são isomorfas como álgebras G-graduadas.

Uma importante e bem conhecida álgebra com a qual lidamos nesta tese é a álgebra Mk(F )

de matrizes k × k sobre F , simplesmente denotada por Mk. Munimos essa álgebra com uma

graduação adequada, a saber, uma graduação elementar da seguinte forma: fixada uma k-

upla g̃ = (g1, . . . , gk) ∈ Gk, tal graduação consiste em definir, para cada h ∈ G, (Mk)h :=

spanF{eij | g−1
i gj = h}, onde, para cada i, j ∈ {1, . . . , k}, eij denota a (i, j)-matriz unitária

de Mk. Note que, para cada i, j ∈ {1, . . . , k}, a matriz unitária eij é homogênea com grau

g−1
i gj. Por outro lado, em [13], foi afirmado que se as matrizes unitárias eij são homogêneas,

para todo i, j ∈ {1, . . . , k}, então a G-graduação sobre Mk é elementar. Vale observar que, no

caso em que F é um corpo algebricamente fechado, as graduações elementares são essenciais na

classificação de todas as G-graduações de Mk (veja [9]). Ainda, qualquer graduação elementar

sobre a álgebra de matrizes Mk é induzida por uma aplicação α : {1, . . . , k} → G, se definimos

|eij|Mk
= α(i)−1α(j), para todo i, j ∈ {1, . . . , k}. Aqui, a notação (Mk, α) indica que a álgebra

Mk está munida da graduação elementar induzida pela aplicação α. Finalmente, dada a álgebra

de matrizes (Mk, α), definimos a aplicação peso wα : G → N como wα(h) := |{i | 1 ≤ i ≤
k, α(i) = h}|, e o subgrupo invariante, relacionado à (Mk, α), como

Hα := {h ∈ G | wα(hg) = wα(g), para todo g ∈ G}.

Tal subgrupo foi introduzido por Di Vincenzo e Spinelli, em [24], e é uma ferramenta crucial

ao longo do nosso trabalho.

Ressaltamos que, quando F é algebricamente fechado, as álgebras de matrizes Mk são as

únicas álgebras simples de dimensão finita, a menos de isomorfismo. Em relação ao contexto G-

graduado, dizemos que uma álgebra G-graduada A é G-simples se A2 ̸= 0 e A não possui ideais
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graduados não-triviais. Mesmo neste caso, as álgebras de matrizes desempenham um papel

fundamental na classificação das F -álgebras G-simples de dimensão finita, onde F é um corpo

algebricamente fechado. Mais precisamente, em [10], Bahturin, Sehgal e Zaicev trabalhando em

um contexto geral, obtiveram para grupos abelianos finitos que qualquer F -álgebra G-simples

de dimensão finita é G-isomorfa à uma álgebra G-graduada dada por um produto tensorial

entre Mk e uma álgebra de divisão graduada.

Além disso, observamos que a classificação anterior pode ser reescrita quando estamos li-

dando com alguns grupos particulares. Por exemplo, se F é um corpo algebricamente fechado e

G = C2, um grupo ćıclico de ordem 2, em [35], é estabelecido que as F -álgebras G-simples de di-

mensão finita (bem conhecidas como as superálgebras simples) são, a menos de G-isomorfismo,

iguais à:

(i) Mk,l :=

(
A B

C D

)
, onde k ≥ l ≥ 0, k ̸= 0, A ∈ Mk, D ∈ Ml, B ∈ Mk×l e C ∈ Ml×k,

munida da graduação (Mk,l)0 :=

(
A 0

0 D

)
e (Mk,l)1 :=

(
0 B

C 0

)
;

(ii) Mn(F⊕cF ), onde c2 = 1, com a graduação (Mn(F⊕cF ))0 :=Mn e (Mn(F⊕cF ))1 := cMn.

Vale dizer que, em ambos os casos acima, conforme explicitaremos na Seção 1.1, podemos

ver tais superálgebras simples como subálgebras graduadas de álgebras de matrizes munidas de

uma graduação elementar. Ainda, assumindo que o corpo F é algebricamente fechado, também

temos uma descrição das F -álgebras G-simples de dimensão finita, quando G é um grupo de

ordem prima p (veja [21]).

Nesta tese, generalizamos tais resultados para o caso em queG = Cn é um grupo ćıclico finito

de ordem n, exibindo uma caracterização das F -álgebras G-simples de dimensão finita vistas

como subálgebras graduadas de álgebras de matrizes munidas de graduações elementares. Além

disso, aplicando resultados de Aljadeff e Haile, apresentados em [3], estabelecemos interessantes

condições a fim de obter um G-isomorfismo entre essas álgebras G-simples.

Neste momento, lidando em um contexto mais geral, dadas subálgebras graduadasA1, . . . , Am

de álgebras de matrizes (Md1 , α1), . . . , (Mdm , αm), respectivamente, considere a álgebra de ma-

trizes bloco triangular superior UT (A1, . . . , Am). De maneira natural, munimos tal álgebra

UT (A1, . . . , Am) com a G-graduação elementar α̃ obtida “colando” as graduações elementares

α1, . . . , αm dadas, e escreveremos a álgebra G-graduada assim obtida como (UT (A1, . . . , Am), α̃)

ou simplesmente UTG(A1, . . . , Am).

As álgebras de matrizes bloco triangulares superiores aparecem em vários trabalhos, sendo

um objeto significativo de estudo para muitos pesquisadores. Por exemplo, Valenti e Za-

icev provaram que, a menos de isomorfismo graduado, todas as G-graduações da álgebra

xi



UT (F, . . . , F ) são, na verdade, G-graduações elementares (quando G é um grupo qualquer,

não necessariamente finito e abeliano, e F é um corpo qualquer) (veja [34]). Recentemente, em

[11], Borges e Diniz descreveram as G-graduações de álgebras de matrizes bloco triangulares

superiores adequadas, no caso em que G é um grupo abeliano (não necessariamente finito) e

F é um corpo algebricamente fechado de caracteŕıstica zero. Esta descrição também envolve

as graduações elementares. Além disso, em [36], Yasumura estudou as G-graduações sobre as

álgebras de matrizes bloco triangulares superiores, quando G é um grupo qualquer (não neces-

sariamente finito e abeliano) e F é um corpo de caracteŕıstica zero, ou caracteŕıstica grande o

suficiente, não necessariamente algebricamente fechado.

Seja F um corpo algebricamente fechado de caracteŕıstica zero. Assumindo que o grupo

G é ćıclico finito e considerando nossa descrição de cada F -álgebra G-simples Ai de dimensão

finita como uma subálgebra graduada de uma álgebra de matrizes munida de graduação el-

ementar, nesta tese, focamos nossos estudos nas álgebras UTG(A1, . . . , Am). Em particular,

propomos investigar propriedades relacionadas ao conjunto de todas as identidades polinomiais

G-graduadas satisfeitas por UTG(A1, . . . , Am). A fim de apresentar esses conceitos e clarificar

nossos objetivos, precisamos estabelecer algumas definições e notações.

Primeiramente, lembramos que, de maneira natural, podemos definir F ⟨X;G⟩ como a

álgebra G-graduada associativa livre unitária livremente gerada por XG := ∪g∈GXg, onde

Xg := {xg1, x
g
2, . . .} são conjuntos enumeráveis disjuntos de variáveis não comutativas, com

g ∈ G. Dada uma álgebra graduada A = ⊕g∈GAg, um elemento f = f(x
gi1
1 , . . . , x

gin
n )

de F ⟨X;G⟩ é uma identidade polinomial G-graduada de A se f(a1, . . . , an) = 0, para todo

a1 ∈ Agi1
, . . . , an ∈ Agin

. O conjunto de todas as identidades polinomiais G-graduadas de A

será denotado por IdG(A). É bem conhecido que IdG(A) é um TG-ideal (ou um T -ideal graduado)

de F ⟨X;G⟩, isto é, IdG(A) é um ideal graduado, estável sob todos endomorfismos G-graduados

de F ⟨X;G⟩. Lembramos que o chamado caso ordinário corresponde à G = {1G}. Finalmente,

se uma álgebra G-graduada A satisfaz uma identidade polinomial ordinária não-trivial (isto é,

se existe um polinômio não nulo f(x1, . . . , xn) ∈ F ⟨X⟩ tal que f(a1, . . . , an) = 0, para todo

ai ∈ A), então A é chamada uma PI-álgebra G-graduada.

Fixado um TG-ideal I de F ⟨X;G⟩, é interessante e útil coletar todas as álgebrasG-graduadas
A satisfazendo I ⊆ IdG(A). Para este fim, definimos a variedade de álgebras G-graduadas VG,

determinada por I, como VG := VG(I) = {A | I ⊆ IdG(A)} e denotamos seu TG-ideal I como

IdG(VG). Se A é uma álgebra G-graduada tal que IdG(VG) = IdG(A), então dizemos que a

variedade VG é gerada por A e escrevemos VG = varG(A). As variedades exploradas ao longo dos

caṕıtulos desta tese serão aquelas geradas por uma PI-álgebra G-graduada finitamente gerada.

Tais variedades serão chamadas de posto finito. Lembramos que, como foi mostrado em [5],

sobre corpos algebricamente fechados de caracteŕıstica zero qualquer variedade de álgebras G-
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graduadas de posto finito é gerada por uma PI-álgebra G-graduada de dimensão finita, quando

G é um grupo finito. Tal fato também foi provado, independentemente, em [33] para grupos

abelianos finitos.

Dentre os elementos da álgebra livre F ⟨X;G⟩, os chamados polinômios multilineares mere-

cem um destaque especial em virtude de suas aplicabilidades na solução de vários problemas

da PI-teoria. É bem conhecido que, sobre corpos de caracteŕıstica zero, o TG-ideal IdG(A)

de uma álgebra graduada A é completamente determinado pelos polinômios multilineares que

ele contém. Alguns exemplos de polinômios multilineares são os polinômios de Capelli e os

polinômios standard, os quais serão utilizados ao longo deste trabalho. Dada uma álgebra gradu-

ada A e um inteiro n ≥ 1, se consideramos PG
n como o F -espaço vetorial gerado pelos polinômios

multilineares de grau n de F ⟨X;G⟩, então o inteiro não-negativo cGn (A) := dimF
PG
n

PG
n ∩IdG(A)

mede

o crescimento das identidades polinomiais G-graduadas de A. Tal inteiro é chamado n-ésima

codimensão G-graduada de A.

No caso em que A é uma PI-álgebra G-graduada, {cGn (A)}n≥1 é limitada exponencialmente

([28]) e, nesta situação, definimos expG(A) := lim
n→∞

n
√
cGn (A) como o G-expoente de A. Em

2011, Aljadeff, Giambruno e La Mattina provaram que o G-expoente existe e é um inteiro

não-negativo, quando A é uma álgebra G-graduada de dimensão finita sobre um corpo algebri-

camente fechado de caracteŕıstica zero (veja [2]). Além disso, neste caso, eles apresentaram um

método de como calcular o G-expoente de A. Mais precisamente, considere a generalização da

decomposição de Wedderburn-Malcev de A, dada por A = A1⊕· · ·⊕Am+J(A), onde A1, . . . , Am

são F -álgebras G-simples e J(A), o radical de Jacobson de A, é um ideal graduado. Então, o G-

expoente de A é o número q := max dimF (Ar1⊕· · ·⊕Arl), onde Ar1 , . . . , Arl são subálgebras G-

simples distintas do conjunto {A1, . . . , Am} que satisfazem Ar1J(A)Ar2J(A) · · ·Arl−1
J(A)Arl ̸=

0.

No âmbito das variedades VG geradas por uma PI-álgebra G-graduada A, definimos sua

n-ésima codimensão G-graduada e seu G-expoente como sendo, respectivamente, a n-ésima

codimensão G-graduada e o G-expoente de A. Em outras palavras, cGn (VG) := cGn (A), para

todo n ≥ 1, e expG(VG) := expG(A). Em particular, neste trabalho, estamos interessados em

estudar as variedades VG de PI-álgebras G-graduadas de posto finito tais que expG(VG) = d e

para toda subvariedade própria UG de VG é válido que expG(UG) < d. Essas variedades são

chamadas minimais de G-expoente d.

Em relação ao caso ordinário, em [27], Giambruno e Zaicev mostraram que uma variedade V
de posto finito, de um dado expoente, é minimal se, e somente se, V é gerada por uma álgebra

de matrizes bloco triangular superior UT (d1, . . . , dm), de tamanho d1, . . . , dm. Ainda, neste

mesmo artigo, os autores provaram que o T -ideal de UT (d1, . . . , dm) satisfaz a propriedade de
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fatorabilidade, ou seja, Id(UT (d1, . . . , dm)) se decompõe em

Id(UT (d1, . . . , dm)) = Id(Md1) · · · Id(Mdm).

Vale enfatizar que a fim de obter a decomposição acima, os autores aplicaram os significantes

resultados desenvolvidos por Lewin em [30]. Tais resultados são considerados os passos cruciais

na investigação do T -ideal de identidades polinomiais de álgebras de matrizes bloco triangulares

superiores.

A propriedade de fatorabilidade é também um problema relevante quando consideramos

álgebras com algumas estruturas adicionais. Por exemplo, para álgebras com involução, Di

Vincenzo e La Scala obtiveram interessantes resultados sobre a propriedade de fatorabili-

dade relacionada aos T∗-ideais de algumas álgebras de matrizes bloco triangulares superiores

UT∗(A1, . . . , Am), onde A1, . . . , Am são álgebras ∗-simples de dimensão finita (veja [20]).

Para um grupo ćıclico finito G e dada uma m-upla (A1, . . . , Am) de álgebras G-simples

de dimensão finita, consideramos a álgebra de matrizes bloco triangular superior G-graduada

UTG(A1, . . . , Am), munida de uma graduação elementar. Neste trabalho, estamos interessados

em explorar a propriedade de fatorabilidade relacionada ao TG-ideal IdG(UTG(A1, . . . , Am)).

Mais precisamente, pretendemos estabelecer condições necessárias e suficientes a fim de obter

que o TG-ideal IdG(UTG(A1, . . . , Am)) se fatore em

IdG(UTG(A1, . . . , Am)) = IdG(A1) · · · IdG(Am).

Destacamos que o conceito de G-regularidade, introduzido por Di Vincenzo e La Scala em

[19], é uma importante ferramenta conectada à fatorabilidade do TG-ideal de UTG(A1, . . . , Am).

Este conceito está relacionado a subálgebras graduadas B de álgebras de matrizes (munidas

de graduações elementares) e leva em conta aplicações adequadas definidas sobre álgebras

genéricas G-graduadas associadas à B, bem como todos os elementos do grupo G. No mesmo

artigo, no caso em que G é um grupo abeliano finito e A1 ⊆ (Md1 , α1), A2 ⊆ (Md2 , α2) são

subálgebras graduadas, os autores provaram que se uma das álgebras A1 e A2 é G-regular, então

IdG(UTG(A1, A2)) = IdG(A1)IdG(A2). Além disso, se o grupo G tem ordem prima, eles estab-

eleceram que o TG-ideal IdG(UTG(Md1 ,Md2)) é fatorável se, e somente se, uma das álgebrasMd1

ou Md2 é G-regular. Enfatizamos que os resultados de Lewin, dados em [30], foram essenciais

na obtenção destas afirmações. Ademais, vale dizer que a G-regularidade tem sido explorada

em muitos trabalhos recentes (veja, por exemplo, [7, 12, 15, 16, 23]).

No caso em que G = C2, um grupo ćıclico de ordem 2, e A1, . . . , Am são álgebras G-simples

de dimensão finita, a fatorabilidade dos TG-ideais IdG(UTG(A1, . . . , Am)) foi desenvolvida, em

[7], por Avelar, Di Vincenzo e da Silva. Foi provado que o TG-ideal IdG(UTG(A1, . . . , Am))
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é fatorável se, e somente se, existe no máximo um ı́ndice i ∈ {1, . . . ,m} tal que Ai é uma

superálgebra simples não-G-regular. Além disso, eles mostraram que tais afirmações são equiv-

alentes à existência de uma única classe de isomorfismo deG-graduações para UTG(A1, . . . , Am).

Nesta tese, generalizamos as equivalências acima, obtendo as afirmações similares para o

caso em que G é um p-grupo ćıclico, onde p é um primo arbitrário. Mais precisamente, provamos

o seguinte resultado:

Teorema A. Seja p um número primo e seja G um p-grupo ćıclico. Dadas álgebras G-simples

de dimensão finita A1, . . . , Am, considere A = UTG(A1, . . . , Am). As seguintes afirmações são

equivalentes:

(i) O TG-ideal de A é fatorável;

(ii) Existe no máximo um ı́ndice ℓ ∈ {1, . . . ,m} tal que Aℓ é uma álgebra G-simples não-G-

regular;

(iii) Existe uma única classe de isomorfismo de G-graduações para A.

Destacamos que, para obter o teorema acima, aplicamos técnicas diferentes daquelas empre-

gadas no caso C2. Um papel crucial é desempenhado pelos subgrupos invariantes H(l)
α̃ relaciona-

dos às álgebras G-simples Al que aparecem nos blocos diagonais de (UT (A1, . . . , Am), α̃). Na

sequência, diremos algumas palavras sobre a G-regularidade e sua conexão com os subgrupos

invariantes.

Primeiramente, em [19], Di Vincenzo e La Scala caracterizaram as álgebras de matrizes

(Mk, α) que são G-regulares através de propriedades relacionadas às aplicações α. Mais pre-

cisamente, é válido que (Mk, α) é G-regular se, e somente se, existe c ∈ N∗ tal que wα(h) = c,

para todo h ∈ G. Além disso, eles obtiveram uma caracterização das superálgebras simples

C2-regulares, mostrando que Mk,l é C2-regular se, e somente se, k = l, enquanto Mn(F ⊕ cF )

é C2-regular, para todo n ≥ 1.

Para qualquer grupo ćıclico finito G, uma vez que estamos considerando cada álgebra G-

simples de dimensão finita como uma subálgebra graduada de uma álgebra de matrizes mu-

nida de uma graduação elementar, propomos caracterizar as álgebras G-simples G-regulares

de dimensão finita. Acontece que, neste caso, estabelecemos uma interessante conexão entre

tais álgebras G-regulares e os subgrupos invariantes. Mais precisamente, provamos que uma

álgebra G-simples de dimensão finita, sobre um corpo algebricamente fechado, é G-regular se,

e somente se, o subgrupo invariante relacionado à essa álgebra G-simples coincide com o grupo

G.

Como consequência desta caracterização, obtemos importantes resultados quando lidamos

com as álgebras de matrizes bloco triangulares superiores G-graduadas (UT (A1, . . . , Am), α̃).
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Em particular, se G é um p-grupo ćıclico, com p sendo um número primo, provamos que a

G-regularidade de Aa ou Ab é equivalente à H(a)
α̃ H(b)

α̃ = G. Mais ainda, estabelecemos interes-

santes e úteis relações entre os subgrupos invariantes H(l)
α̃ , a existência de uma única classe de

isomorfismos de G-graduações para UTG(A1, . . . , Am) e os TG-ideais indecompońıveis associados

às identidades polinomiais G-graduadas de UTG(A1, . . . , Am). Consequentemente, tais fatos se

revelaram como pontos cruciais para concluir nossos resultados principais sobre a propriedade

de fatorabilidade de IdG(UTG(A1, . . . , Am)), no caso em que G é um p-grupo ćıclico.

Contudo, se o grupo ćıclico finito G não é um p-grupo, então as equivalências relacionadas

à propriedade de fatorabilidade dos TG-ideais IdG(UTG(A1, . . . , Am)), descritas anteriormente,

não são mais necessariamente válidas. Mais precisamente, constrúımos uma adequada álgebra

de matrizes bloco triangular superior G-graduada A = (UT (A1, A2), α̃) tal que IdG(A) é fa-

torável, mas com ambas A1 e A2 não sendo álgebras G-simples G-regulares. Acontece que

embora essas álgebras não sejam G-regulares, elas pertencem à uma nova classe de subálgebras

graduadas de (Mk, α), a saber, as subálgebras graduadas α-regulares. Tal conceito generali-

za a definição de subálgebras graduadas G-regulares, já que também consideramos aplicações

adequadas definidas sobre álgebras genéricas G-graduadas, mas associadas aos elementos per-

tencendo à imagem de α (ao invés de estarem necessariamente associadas à todos os elementos

de G). Neste contexto, assumindo que G é um grupo ćıclico finito, estabelecemos que qualquer

álgebra G-simples de dimensão finita (a qual é uma subálgebra graduada de (Mk, α)) é α-

regular se, e somente se, a imagem de α coincide com uma classe lateral do subgrupo invariante

relacionado à essa álgebra G-simples em G. Além disso, estabelecemos condições necessárias e

suficientes a fim de obter que o TG-ideal IdG(UTG(A1, A2)) é fatorável, no caso em que G é um

grupo ćıclico finito e as álgebras G-simples A1 e A2 são α1-regular e α2-regular, respectivamente.

Voltando à nossa discussão sobre as variedades minimais e as álgebras de matrizes bloco tri-

angulares superiores G-graduadas, vamos pontuar algumas observações e resultados. Como já

mencionamos anteriormente, no caso ordinário, qualquer variedade minimal de PI-álgebras asso-

ciativas sobre F , de posto finito, com um dado expoente, é gerada por uma álgebra de matrizes

bloco triangular superior UT (d1, . . . , dm), e a rećıproca é verdadeira (veja [27]). Recentemente,

em [17], para G sendo um grupo de ordem prima, Di Vincenzo, da Silva e Spinelli provaram

que uma variedade de PI-álgebras G-graduadas de posto finito é minimal de G-expoente d

se, e somente se, ela é gerada por uma álgebra G-graduada UTG(A1, . . . , Am) satisfazendo

dimF (A1 ⊕ · · · ⊕ Am) = d, onde A1, . . . , Am são álgebras G-simples de dimensão finita. Para

álgebras munidas de outras estruturas adicionais veja, por exemplo, [18] e [20].

No caso em que G é um grupo ćıclico finito, seja VG uma variedade de PI-álgebras G-

graduadas associativas sobre F , de posto finito, de um dado G-expoente d. Nesta tese,

mostramos que se VG é minimal, então ela é gerada por uma álgebra de matrizes bloco trian-
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gular superior G-graduada UTG(A1, . . . , Am) adequada satisfazendo dimF (A1 ⊕ · · · ⊕Am) = d,

onde A1, . . . , Am são álgebras G-simples de dimensão finita. Por outro lado, dada uma m-upla

(A1, . . . , Am) de álgebras G-simples de dimensão finita e considerando A = UTG(A1, . . . , Am),

resta provar a rećıproca do resultado acima. Neste texto, estabelecemos o seguinte resultado:

Teorema B. Seja G um grupo ćıclico finito. Dadas álgebras G-simples de dimensão finita

A1, . . . , Am, considere A = UTG(A1, . . . , Am). Assuma que pelo menos uma das seguintes

propriedades é válida:

(i) m = 1 ou 2;

(ii) existe ℓ ∈ {1, . . . ,m} tal que o subgrupo invariante relacionado à álgebra G-simples Aℓ é

{1G};

(iii) os subgrupos invariantes relacionados às álgebras G-simples A1, . . . , Am são todos (exceto

para no máximo um) iguais à G.

Então varG(A) é minimal com expG(A) = dimF (A1 ⊕ · · · ⊕ Am).

Ainda, assumindo pelo menos uma das condições acima, conclúımos também que quaisquer

duas álgebras de matrizes bloco triangulares superiores G-graduadas, munidas de graduações

elementares, são G-isomorfas se, e somente se, elas satisfazem as mesmas identidades poli-

nomiais G-graduadas. Neste sentido, contribúımos com o problema do isomorfismo no con-

texto da PI-teoria. Mais pesquisas relacionadas à este problema podem ser encontradas em

[3, 8, 14, 17, 18, 24, 29].

Observamos que obter tais resultados anteriormente citados significa dar um passo impor-

tante no estudo das variedades minimais de PI-álgebras G-graduadas, de posto finito, com G

sendo um grupo abeliano finito arbitrário. Além disso, vale mencionar que para alcançar essas

afirmações, uma ferramenta crucial usada são os chamados polinômios de Kemer associados às

álgebras UTG(A1, . . . , Am). Esses polinômios desempenham um papel importante na PI-teoria

(veja, por exemplo, [4, 5, 17]).

Esta tese está estruturada por meio de cinco caṕıtulos. No Caṕıtulo 1, assumimos que G

é um grupo abeliano finito e lembramos alguns dos principais tópicos associados à teoria das

álgebras satisfazendo identidades polinomiais. Começamos definindo álgebras G-graduadas e

exibindo alguns exemplos. Em especial, constrúımos cuidadosamente a álgebra de matrizes

bloco triangular superior G-graduada UTG(A1, . . . , Am), onde A1, . . . , Am são subálgebras gra-

duadas de álgebras de matrizes munidas de graduações elementares. Além disso, apresentamos

a definição dos TG-ideais de identidades polinomiais G-graduadas, as codimensões G-graduadas,

o G-expoente, as variedades minimais e as álgebras G-graduadas minimais.
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No Caṕıtulo 2, também assumimos que o grupo G é abeliano finito e lembramos a definição

de G-regularidade e fatorabilidade dos TG-ideais IdG(UTG(A1, . . . , Am)), onde A1, . . . , Am são

subálgebras graduadas de álgebras de matrizes munidas de graduações elementares. Além disso,

investigamos a propriedade de fatorabilidade quando lidamos com álgebras de matrizes bloco

triangulares superiores G-graduadas tendo dois blocos, no caso em que A1 e A2 são subálgebras

graduadas de álgebras de matrizes munidas de graduações elementares. Feito isso, introduzi-

mos as subálgebras graduadas α-regulares de uma álgebra de matrizes (Mk, α) e o conceito de

subgrupos invariantes. Finalizamos este caṕıtulo relacionando as álgebras de matrizes (Mk, α)

que são α-regulares com os seus subgrupos invariantes.

No Caṕıtulo 3, assumimos que G é um grupo ćıclico finito. A primeira seção deste caṕıtulo

é dedicada à caracterização das F -álgebras G-simples de dimensão finita como subálgebras gra-

duadas de álgebras de matrizes munidas de apropriadas graduações elementares. Na sequência,

estabelecemos interessantes condições necessárias e suficientes a fim de existir um isomorfismo

graduado entre duas tais álgebras G-simples, bem como importantes resultados técnicos rela-

cionados à elas. Finalmente, abordamos a noção de G-regularidade e α-regularidade quando

associadas às álgebras G-simples de dimensão finita, e também conectamos tais conceitos com

os subgrupos invariantes.

O Caṕıtulo 4 tem como objetivo apresentar um dos principais resultados desta tese. Mais

precisamente, aquele que estabelece condições necessárias e suficientes para a fatorabilidade

do TG-ideal IdG(UTG(A1, . . . , Am)), no caso em que G é um p-grupo ćıclico, com p sendo um

número primo, e A1, . . . , Am são álgebras G-simples de dimensão finita. Apresentamos algumas

condições suficientes para a existência de uma única classe de isomorfismo de G-graduações para

UTG(A1, . . . , Am), bem como para IdG(UTG(A1, . . . , Am)) ser indecompońıvel. Tais condições

estão intimamente ligadas com os subgrupos invariantes relacionados aos blocos G-simples

A1, . . . , Am. Finalizamos este caṕıtulo discutindo a propriedade de fatorabilidade dos TG-ideais

IdG(UTG(A1, A2)), no caso em que G não é necessariamente um p-grupo ćıclico, e as álgebras

G-simples A1 e A2 são α1-regular e α2-regular, respectivamente.

No Caṕıtulo 5, o grupo G é ćıclico finito e exploramos as variedades minimais de PI-álgebras

G-graduadas associativas sobre F , de posto finito, com um dadoG-expoente. Na primeira seção,

estabelecemos que tais variedades minimais são geradas por álgebras de matrizes bloco triangu-

lares superiores G-graduadas adequadas. Nas seções seguintes, introduzimos os polinômios de

Kemer para as álgebras UTG(A1, . . . , Am). Além disso, usando tais polinômios, estabelecemos

importantes propriedades estruturais entre duas álgebras de matrizes bloco triangulares supe-

riores G-graduadas. Finalmente, conclúımos que varG(UTG(A1, . . . , Am)) é minimal, quando a

álgebra UTG(A1, . . . , Am) satisfaz pelo menos uma das importantes condições dadas por (i), (ii)

ou (iii).
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Nas Considerações Finais, apresentamos uma revisão geral de alguns dos principais resulta-

dos abordados ao longo desta tese. Em particular, destacamos a caracterização das álgebras G-

simples de dimensão finita, a propriedade de fatorabilidade do TG-ideal IdG(UTG(A1, . . . , Am)),

no caso em que G é um p-grupo ćıclico, e as afirmações obtidas quando trabalhamos com

as variedades minimais de PI-álgebras G-graduadas associativas, de posto finito. Além disso,

dedicamos esta parte final para discutir sobre alguns resultados cuja demonstração foi feita,

nesta tese, diferentemente daquela apresentada em [22]; mencionando ainda outros resultados

obtidos em [22].
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Introduction

In the last decades, the study of the algebras satisfying polynomial identities, namely PI-

algebras, has been developed on a large scale. There is a growing number of researches involving

such algebras, which explicite the importance of this theory in the mathematical ambit. In this

sense, the results present in this thesis contribute, in a positive way, with the works in the area

of algebra and, particularly, with those concerning to PI-algebras. It is important highlighting

that these results were developed in a joint work with my doctoral advisor, Professor Viviane

Ribeiro Tomaz da Silva, and with Professor Onofrio Mario Di Vincenzo (Università degli Studi

della Basilicata - Italy).

Let F be an algebraically closed field of characteristic zero and consider G a finite cyclic

group. Throughout this work, all the F -algebras are assumed to be associative. We dedicate

the first part of this thesis to studying the factoring property associated to the TG-ideals of G-

graded polynomial identities satisfied by the G-graded upper block triangular matrix algebras

UTG(A1, . . . , Am), where A1, . . . , Am are finite dimensional G-simple algebras over F . Our

results obtained in this part have already been published and can be found in [22].

Secondly, the present work is devoted to exploring the varieties of associative G-graded

PI-algebras over F , of finite basic rank. More precisely, we propose to describe those varieties

which are minimal, of a given G-exponent, by means of suitable generating algebras related to

upper block triangular matrix algebras. On the other hand, by imposing some extra conditions

on UTG(A1, . . . , Am), we prove that such G-graded upper block triangular matrix algebras

generate minimal varieties. The results obtained in this part are in the paper [31] submitted

for publication.

In this introduction, we give the main definitions related to the PI-theory, as well as the

notations which will be used along this text. We contextualize the topics addressed, giving

more details about our main aims and their relevance, and we discourse regarding the study

tools employed. We finish this introduction listing the subjects covered in each chapter of this

thesis.

Let A be an associative algebra over a field F of characteristic zero and G be a finite

abelian group. We say that A is a G-graded algebra if A = ⊕g∈GAg (direct sum as vector
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space), where, for each g ∈ G, Ag is a vector subspace of A, and AgAh ⊆ Agh, for all g, h ∈ G.

Each subspace Ag is called a graded component of degree g of A. Moreover, an element a ∈ Ag

is said to be homogeneous of degree g and its degree is denoted by |a|A. When the graded

algebra A is unitary and all its non-zero homogeneous elements are invertible, we say that A is

a graded skew field. A subalgebra (vector subspace, ideal, respectively) V of a G-graded algebra

A which admits the decomposition V =
⊕

g∈G(V ∩ Ag) is called a graded subalgebra (graded

vector subspace, graded ideal, respectively) of A. It is notorious the relevance of the graded

algebras in researches over the last 20 years (see, for instance, [1, 5, 9, 10, 29, 32]). Given

two graded algebras A = ⊕g∈GAg and B = ⊕g∈GBg, if there exists an algebra isomorphism

φ : A→ B such that φ(Ag) = Bg, for all g ∈ G, then we say that A is graded-isomorphic to B,

in other words, A and B are isomorphic like G-graded algebras.

An important and well known algebra which we deal in this thesis is the k × k matrix

algebra Mk(F ) over F , shortly denoted by Mk. We endow it with a suitable grading, namely,

an elementary grading in the following way: fixed a k-tuple g̃ = (g1, . . . , gk) ∈ Gk, such

grading consists in defining, for each h ∈ G, (Mk)h := spanF{eij | g−1
i gj = h}, where, for each

i, j ∈ {1, . . . , k}, eij denotes the (i, j)-matrix unit ofMk. Notice that, for each i, j ∈ {1, . . . , k},
the matrix unit eij is homogeneous with degree g−1

i gj. On the other hand, in [13], it was proved

that if the matrix units eij are homogeneous, for all i, j ∈ {1, . . . , k}, then the G-grading on

Mk is elementary. It is worth mentioning that in case F is an algebraically closed field, the

elementary gradings are essential in the classification of all G-gradings of Mk (see [9]). Still,

any elementary grading on the matrix algebra Mk is induced by a map α : {1, . . . , k} → G,

if we define |eij|Mk
= α(i)−1α(j), for all i, j ∈ {1, . . . , k}. Here, the notation (Mk, α) indicates

that the algebra Mk is equipped with the elementary grading induced by the map α. Finally,

given the matrix algebra (Mk, α), we set the weight map wα : G→ N as wα(h) := |{i | 1 ≤ i ≤
k, α(i) = h}|, and the invariance subgroup, related to (Mk, α), as

Hα := {h ∈ G | wα(hg) = wα(g), for all g ∈ G}.

Such subgroup was introduced by Di Vincenzo and Spinelli, in [24], and it is a crucial tool

throughout our work.

We highlight that, when F is algebraically closed, the matrix algebras Mk are the unique

finite dimensional simple algebras, up to isomorphism. Regarding to G-graded context, we say

that a G-graded algebra A is G-simple if A2 ̸= 0 and A has no non-trivial graded ideals. Even

in this case, the matrix algebras also play a fundamental role in the classification of the finite

dimensional G-simple F -algebras, where F is an algebraically closed field. More precisely, in

[10], Bahturin, Sehgal and Zaicev by working in a context general, obtained for finite abelian

groups that any finite dimensional G-simple F -algebra is graded-isomorphic to a G-graded
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algebra given by a tensor product of Mk and a graded skew field.

Furthermore, we remark that the previously classification can be rewritten when we are

dealing with some particular groups. For instance, if F is an algebraically closed field and

G = C2, a cyclic group of order 2, in [35], it is proved that the finite dimensional G-simple

F -algebras (also known as the simple superalgebras) are, up to graded isomorphism, equal to:

(i) Mk,l :=

(
A B

C D

)
, where k ≥ l ≥ 0, k ̸= 0, A ∈ Mk, D ∈ Ml, B ∈ Mk×l and C ∈ Ml×k,

endowed with the grading (Mk,l)0 :=

(
A 0

0 D

)
and (Mk,l)1 :=

(
0 B

C 0

)
;

(ii) Mn(F ⊕cF ), where c2 = 1, with the grading (Mn(F ⊕cF ))0 :=Mn and (Mn(F ⊕cF ))1 :=
cMn.

It is worth saying that, in both above cases, as we will explicit in Section 1.1, we can see

such simple superalgebras as graded subalgebras of matrix algebras endowed with an elementary

grading. Still, by assuming that the field F is algebraically closed, we also have a description

of the finite dimensional G-simple F -algebras, when G is a group of prime order p (see [21]).

In this thesis, we generalize such results for the case G = Cn, a finite cyclic group of order

n, by exhibiting a characterization of the finite dimensional G-simple F -algebras seen as graded

subalgebras of matrix algebras endowed with elementary gradings. Furthermore, by applying

results of Aljadeff and Haile, presented in [3], we establish nice conditions in order to obtain a

graded isomorphism between these G-simple algebras.

At this moment, dealing in a more general context, given graded subalgebras A1, . . . , Am

of matrix algebras (Md1 , α1), . . . , (Mdm , αm), respectively, consider the upper block triangular

matrix algebra UT (A1, . . . , Am). Naturally, we endow such algebra UT (A1, . . . , Am) with the

elementary G-grading α̃ obtained by gluing the given elementary gradings α1, . . . , αm, and

we will write the G-graded algebra obtained in this way as (UT (A1, . . . , Am), α̃) or simply by

UTG(A1, . . . , Am).

The upper block triangular matrix algebras appear in several works, being a significant

object of study for many researchers. For instance, Valenti and Zaicev proved that, up to

graded isomorphism, all the G-gradings of the algebra UT (F, . . . , F ) are, actually, elementary

G-gradings (when G is an any group, not necessarily finite and abelian, and F is an any field)

(see [34]). Recently, in [11], Borges and Diniz described the G-gradings of suitable upper block

triangular matrix algebras, in case G is an abelian group (not necessarily finite) and F is an

algebraically closed field of characteristic zero. This description also involves the elementary

gradings. Moreover, in [36], Yasumura studied the G-gradings on the algebra of upper block
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triangular matrices, when G is an any group (not necessarily finite and abelian) and F is a field

of characteristic either zero or large enough, not necessarily algebraically closed.

Let F be an algebraically closed field of characteristic zero. By assuming that the group

G is finite cyclic and considering our description of each finite dimensional G-simple F -algebra

Ai as a graded subalgebra of a matrix algebra endowed with elementary grading, in this thesis,

we focus our studies on the algebras UTG(A1, . . . , Am). In particular, we propose to investigate

properties related to the set of all G-graded polynomial identities satisfied by UTG(A1, . . . , Am).

In order to present these concepts and to clarify our aims, we need to establish some definitions

and notations.

Firstly, we recall that, in a natural way, we can define F ⟨X;G⟩ as the unitary free as-

sociative G-graded algebra freely generated by XG := ∪g∈GXg, where Xg := {xg1, x
g
2, . . .} are

disjoint countable sets of non-commutative variables, with g ∈ G. Given a graded algebra

A = ⊕g∈GAg, an element f = f(x
gi1
1 , . . . , x

gin
n ) of F ⟨X;G⟩ is a G-graded polynomial identity of

A if f(a1, . . . , an) = 0, for all a1 ∈ Agi1
, . . . , an ∈ Agin

. The set of all the G-graded polynomial

identities of A will be denoted by IdG(A). It is well known that IdG(A) is a TG-ideal (or a graded

T -ideal) of F ⟨X;G⟩, that is, IdG(A) is a graded ideal, stable under all G-graded endomorphism

of F ⟨X;G⟩. We recall that the so-called ordinary case corresponds to G = {1G}. Finally, if a
G-graded algebra A satisfies a non-trivial ordinary polynomial identity (that is, if there exists

a non-zero polynomial f(x1, . . . , xn) ∈ F ⟨X⟩ such that f(a1, . . . , an) = 0, for all ai ∈ A), then

A is called a G-graded PI-algebra.

Fixed a TG-ideal I of F ⟨X;G⟩, it is interesting and useful to collect all the G-graded algebras

A satisfying I ⊆ IdG(A). To this end, we set the variety of G-graded algebras VG, determined

by I, as VG := VG(I) = {A | I ⊆ IdG(A)} and we denote its TG-ideal I as IdG(VG). If A is a

G-graded algebra such that IdG(VG) = IdG(A), thus we say that the variety VG is generated

by A and we write VG = varG(A). The varieties explored along the chapters of this thesis will

be those generated by a finitely generated G-graded PI-algebra. Such varieties will be called of

finite basic rank. We recall that, as shown in [5], over algebraically closed fields of characteristic

zero any variety of G-graded algebras of finite basic rank is generated by a finite dimensional

G-graded PI-algebra, when G is a finite group. Such fact also was proved, independently, in

[33] for finite abelian groups.

Among the elements of the free algebra F ⟨X;G⟩, the so-called multilinear polynomials

deserve a great prominence due to their applicability in the solution of several problems of the

PI-theory. It is well known that, over fields of characteristic zero, the TG-ideal IdG(A) of a

graded algebra A is completely determined by the multilinear polynomials it contains. Some

examples of multilinear polynomials are the Capelli polynomials and the standard polynomials,

which will be used throughout this work. Given a graded algebra A and an integer n ≥ 1, if
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we consider PG
n as the F -vector space spanned by the multilinear polynomials of degree n of

F ⟨X;G⟩, then the non-negative integer cGn (A) := dimF
PG
n

PG
n ∩IdG(A)

measures the growth of the

G-graded polynomial identities of A. Such integer is called nth G-graded codimension of A.

In case A is a G-graded PI-algebra, {cGn (A)}n≥1 is exponentially bounded ([28]) and, in this

situation, we define expG(A) := lim
n→∞

n
√
cGn (A) as the G-exponent of A. In 2011, Aljadeff, Gi-

ambruno and La Mattina proved that thisG-exponent exists and is a non-negative integer, when

A is a finite dimensional G-graded algebra over an algebraically closed field of characteristic zero

(see [2]). In addition, in this case, they presented a method of how to calculate the G-exponent

of A. More precisely, consider the generalization of the decomposition of Wedderburn-Malcev

of A, given by A = A1⊕· · ·⊕Am+J(A), where A1, . . . , Am are G-simple F -algebras (need not

be ideals in A) and J(A), the Jacobson radical of A, is a graded ideal given by a direct sum

of vector spaces. Thus, the G-exponent of A is the number q := max dimF (Ar1 ⊕ · · · ⊕ Arl),

where Ar1 , . . . , Arl are distinct G-simple subalgebras of the set {A1, . . . , Am} which satisfy

Ar1J(A)Ar2J(A) · · ·Arl−1
J(A)Arl ̸= 0.

Within the scope of the varieties VG generated by a G-graded PI-algebra A, we define

its nth G-graded codimension and its G-exponent as being, respectively, the nth G-graded

codimension and the G-exponent of A. In other words, cGn (VG) := cGn (A), for all n ≥ 1, and

expG(VG) := expG(A). In particular, in this work, we are interested in studying the varieties

VG of G-graded PI-algebras of finite basic rank such that expG(VG) = d and for every proper

subvariety UG of VG it is valid that expG(UG) < d. These varieties are called minimal of

G-exponent d.

Concerning the ordinary case, in [27], Giambruno and Zaicev showed that a variety V of

finite basic rank, of a given exponent, is minimal if, and only if, V is generated by an upper block

triangular matrix algebra UT (d1, . . . , dm), of size d1, . . . , dm. In this same paper, they proved

that the T -ideal of UT (d1, . . . , dm) satisfies the factoring property, that is, Id(UT (d1, . . . , dm))

decomposes into

Id(UT (d1, . . . , dm)) = Id(Md1) · · · Id(Mdm).

It is worth emphasizing that in order to obtain the above decomposition, the authors applied

the important results established by Lewin in [30]. Such results are considered the crucial steps

in the investigation of the T -ideal of polynomial identities of upper block triangular matrix

algebras.

The factoring property is also a relevant problem when we consider algebras with some

additional structures. For instance, for algebras with involution, Di Vincenzo and La Scala

obtained interesting results about the factoring property related to the T∗-ideals of some upper

block triangular matrix algebras UT∗(A1, . . . , Am), where A1, . . . , Am are finite dimensional

∗-simple algebras (see [20]).
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For a finite cyclic group G and an m-tuple (A1, . . . , Am) of finite dimensional G-simple alge-

bras, consider the G-graded upper block triangular matrix algebra UTG(A1, . . . , Am), endowed

with an elementary grading. In this work, we are interested in exploring the factoring problem

related to the TG-ideal IdG(UTG(A1, . . . , Am)). More precisely, we intend to establish necessary

and sufficient conditions in order to obtain that the TG-ideal IdG(UTG(A1, . . . , Am)) factorizes

into

IdG(UTG(A1, . . . , Am)) = IdG(A1) · · · IdG(Am).

We highlight that the concept of G-regularity, introduced by Di Vincenzo and La Scala in

[19], is an important tool connected to the factorability of the TG-ideal of UTG(A1, . . . , Am).

This concept is related to graded subalgebras B of matrix algebras (endowed with elementary

gradings) and takes into account suitable maps defined on G-graded generic algebras associated

to B, as well as all the elements of the group G. In the same paper, in case G is a finite abelian

group and A1 ⊆ (Md1 , α1), A2 ⊆ (Md2 , α2) are graded subalgebras, the authors proved that if

one of A1 and A2 is G-regular, then IdG(UTG(A1, A2)) = IdG(A1)IdG(A2). Furthermore, if G

has prime order, they stated that the TG-ideal IdG(UTG(Md1 ,Md2)) is factorable if, and only

if, one of the algebras Md1 or Md2 is G-regular. We emphasize that the results of Lewin, given

in [30], were essential in obtaining these statements. Moreover, it is worth saying that the

G-regularity has been explored in many recent works (see, for instance, [7, 12, 15, 16, 23]).

In case G = C2, a cyclic group of order 2, and A1, . . . , Am are finite dimensional G-simple

algebras, the factorability of the TG-ideals IdG(UTG(A1, . . . , Am)) was developed, in [7], by

Avelar, Di Vincenzo and da Silva. They proved that the TG-ideal IdG(UTG(A1, . . . , Am)) is

factorable if, and only if, there exists at most one index i ∈ {1, . . . ,m} such that Ai is a non-

G-regular simple superalgebra. Moreover, they obtained that such statements are equivalent

to the existence of a unique isomorphism class of G-gradings for UTG(A1, . . . , Am).

In this thesis, we generalize the above equivalences obtaining the similar ones for the case

G is a cyclic p-group, where p is an arbitrary prime. More precisely, we prove the following

result:

Theorem A. Let p be a prime number and let G be a cyclic p-group. Given finite dimensional

G-simple algebras A1, . . . , Am, consider A = UTG(A1, . . . , Am). The following statements are

equivalent:

(i) The TG-ideal of A is factorable;

(ii) There exists at most one index ℓ ∈ {1, . . . ,m} such that Aℓ is a non-G-regular G-simple

algebra;

(iii) There exists a unique isomorphism class of G-gradings for A.
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We highlight that, in order the above theorem, we apply different techniques from those em-

ployed in case C2. A crucial role is played by the invariance subgroups H(l)
α̃ related to the finite

dimensional G-simple algebras Al appearing in the diagonal blocks of (UT (A1, . . . , Am), α̃). In

the sequel, let us say some words about the G-regularity and its connection with the invariance

subgroups.

Firstly, in [19], Di Vincenzo and La Scala characterized the matrix algebras (Mk, α) which

are G-regular through properties related to the maps α. More precisely, (Mk, α) is G-regular

if, and only if, there exists c ∈ N∗ such that wα(h) = c, for all h ∈ G. Also, they obtained a

characterization of the C2-regular simple superalgebras, showing that Mk,l is C2-regular if, and

only if, k = l, whereas Mn(F ⊕ cF ) is C2-regular, for all n ≥ 1.

For any finite cyclic group G, since we are seeing each finite dimensional G-simple algebra as

a graded subalgebra of a matrix algebra endowed with an elementary grading, we characterize

the finite dimensional G-regular G-simple algebras. It turns out that, in this case, we establish

a connection between such G-regular algebras and the invariance subgroups. More precisely, we

prove that a finite dimensional G-simple algebra, over an algebraically closed field, is G-regular

if, and only if, the invariance subgroup related to this G-simple algebra coincides with the group

G.

As a consequence of this characterization, we obtain important results when we deal with

the G-graded upper block triangular matrix algebras (UT (A1, . . . , Am), α̃). In particular, if G

is a cyclic p-group, with p being a prime number, we prove that the G-regularity of Aa or Ab is

equivalent to H(a)
α̃ H(b)

α̃ = G. Additionally, we establish interesting and useful relations between

the invariance subgroups H(l)
α̃ , the existence of a unique isomorphism class of G-gradings for

UTG(A1, . . . , Am) and the indecomposable TG-ideals associated to the G-graded polynomial

identities of UTG(A1, . . . , Am). Consequently, such facts reveal as crucial points to concluding

our main results about the factoring property of IdG(UTG(A1, . . . , Am)), in case G is a cyclic

p-group.

However, if the finite cyclic group G is not a p-group, thus the equivalences related to

the factoring property of the TG-ideals IdG(UTG(A1, . . . , Am)), described above, are no longer

necessarily valid. More precisely, we build a suitable G-graded upper block triangular matrix

algebra A = (UT (A1, A2), α̃) such that IdG(A) is factorable, but with both A1 and A2 not being

G-regular G-simple algebras. It turns out that although these algebras are not G-regular, they

belong to a new class of graded subalgebras of (Mk, α), namely, the α-regular graded subalgebras.

Such concept generalizes the definition of G-regular graded subalgebras, once we also consider

suitable maps defined on G-graded generic algebras but associated to the elements belonging

to the image of α (instead of being necessarily associated to all the elements of G). In this

context, by assuming that G is a finite cyclic group, we obtain that any finite dimensional
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G-simple algebra (which is a graded subalgebra of (Mk, α)) is α-regular if, and only if, the

image of α coincides with a coset of invariance subgroup related to this G-simple algebra in G.

Moreover, we establish necessary and sufficient conditions in order to obtain that the TG-ideal

IdG(UTG(A1, A2)) is factorable, in case G is a finite cyclic group and the G-simple algebras A1

and A2 are α1-regular and α2-regular, respectively.

Coming back to our discussion about the minimal varieties and the G-graded upper block

triangular matrix algebras, let us point out some remarks and results. As we have already

mentioned above, in the ordinary case, any minimal variety of associative PI-algebras over F ,

of finite basic rank, with a given exponent, is generated by an upper block triangular matrix

algebra UT (d1, . . . , dm), and the reciprocal is true (see [27]). Recently, in [17], for G being a

group of prime order, Di Vincenzo, da Silva and Spinelli proved that a variety of G-graded

PI-algebras of finite basic rank is minimal of G-exponent d if, and only if, it is generated by a

G-graded algebra UTG(A1, . . . , Am) satisfying dimF (A1 ⊕ · · · ⊕Am) = d, where A1, . . . , Am are

finite dimensional G-simple algebras. For algebras endowed with other additional structures

see, for instance, [18] and [20].

In case G is a finite cyclic group, let VG be a variety of associative G-graded PI-algebras

over F , of finite basic rank, of a given G-exponent d. In this thesis, we show that if VG is

minimal, thus it is generated by a suitable G-graded upper block triangular matrix algebra

UTG(A1, . . . , Am) satisfying dimF (A1⊕ · · ·⊕Am) = d, where A1, . . . , Am are finite dimensional

G-simple algebras. On the other hand, given an m-tuple (A1, . . . , Am) of finite dimensional

G-simple algebras and by considering A = UTG(A1, . . . , Am), remains to prove the reciprocal

of the above result. In this text, we establish the following result:

Theorem B. Let G be a finite cyclic group. Given finite dimensional G-simple F -algebras

A1, . . . , Am, consider A := (UT (A1, . . . , Am), α̃). Assume that at least one of the following

properties hold:

(i) m = 1 or 2;

(ii) there exists ℓ ∈ {1, . . . ,m} such that the invariance subgroup related to the G-simple

algebra Aℓ is {1G};

(iii) the invariance subgroups related to the G-simple algebras A1, . . . , Am are all (except for

at most one) equal to G.

Then varG(A) is minimal with expG(A) = dimF (A1 ⊕ · · · ⊕ Am).

Still, under at least one of the above conditions we also conclude that any two G-graded up-

per block triangular matrix algebras, endowed with elementary gradings, are graded-isomorphic
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if, and only if, they satisfy the same G-graded polynomial identities. In this sense, we con-

tribute to the isomorphism problem in the context of the PI-theory. More research related to

this problem can be found in [3, 8, 14, 17, 18, 24, 29].

We remark that getting such results previously cited means taking an important step in the

study of the minimal varieties of G-graded PI-algebras, of finite basic rank, with G being an

arbitrary finite abelian group. Moreover, it is worth mentioning that in order to obtain these

statements, a crucial tool used are the so-called Kemer polynomials associated to the algebras

UTG(A1, . . . , Am). These polynomials play an important role in PI-theory (see, for instance,

[4, 5, 17]).

This thesis is structured by means of five chapters. In Chapter 1, we assume that G is a finite

abelian group and we recall some of the main topics associated to the theory of the algebras

satisfying polynomial identities. We start by defining G-graded algebras and by exhibiting

some examples. In particular, we construct carefully the G-graded upper block triangular

matrix algebra UTG(A1, . . . , Am), where A1, . . . , Am are graded subalgebras of matrix algebras

endowed with elementary gradings. We present the definition of the TG-ideals of G-graded

polynomial identities, the G-graded codimensions, the G-exponent, the minimal varieties and

the minimal G-graded algebras.

In Chapter 2, we also assume that the group G is finite abelian and we recall the definition

of G-regularity and factorability of the TG-ideals IdG(UTG(A1, . . . , Am)), where A1, . . . , Am

are graded subalgebras of matrix algebras endowed with elementary gradings. Moreover, we

investigate the factoring property when we deal with G-graded upper block triangular matrix

algebras having two blocks, in case A1 and A2 are graded subalgebras of matrix algebras

endowed with elementary gradings. That done, we introduce the α-regular graded subalgebras

of a matrix algebra (Mk, α) and the concept of invariance subgroups. We finish the chapter by

relating the matrix algebras (Mk, α) which are α-regular with their invariance subgroups.

In Chapter 3, we assume that G is a finite cyclic group. The first section of this chapter

is dedicated to the characterization of the finite dimensional G-simple F -algebras as graded

subalgebras of matrix algebras endowed with appropriate elementary gradings. In the sequel,

we establish necessary and sufficient conditions in order to have a graded isomorphism between

two such G-simple algebras, as well as important technical results related to them. Finally, we

approach the notion of G-regularity and α-regularity when associated to the finite dimensional

G-simple algebras, and we also connect such concepts with the invariance subgroups.

Chapter 4 aims to present one of the main results of this thesis. More precisely, it presents

one which establishes necessary and sufficient conditions for the factorability of the TG-ideal

IdG(UTG(A1, . . . , Am)), in case G is a cyclic p-group, with p being a prime number, and

A1, . . . , Am are finite dimensional G-simple algebras. We present some sufficient conditions
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for the existence of a unique isomorphism class of G-gradings for UTG(A1, . . . , Am), as well as

for IdG(UTG(A1, . . . , Am)) to be indecomposable. Such conditions are closely connected with

the invariance subgroups related to the G-simple blocks A1, . . . , Am. We finish this chapter

by discussing the factoring property of the TG-ideals IdG(UTG(A1, A2)), in case G is not nec-

essarily a cyclic p-group, and the G-simple algebras A1 and A2 are α1-regular and α2-regular,

respectively.

In Chapter 5, the group G is finite cyclic and we explore the minimal varieties of associative

G-graded PI-algebras over F , of finite basic rank, with a given G-exponent. In the first section,

we prove that such minimal varieties are generated by suitable G-graded upper block triangular

matrix algebras. In the following sections, we introduce the Kemer polynomials for the algebras

UTG(A1, . . . , Am). Furthermore, by using such polynomials, we establish important structural

properties between any two G-graded upper block triangular matrix algebras. Finally, we

conclude that varG(UTG(A1, . . . , Am)) is minimal, when the algebra UTG(A1, . . . , Am) satisfies

at least one of the important conditions given by (i), (ii) or (iii).

In Final Considerations, we present a general review of some of the main results addressed

throughout this thesis. In particular, we talk about the characterization of the finite dimensional

G-simple algebras, the factoring property of the TG-ideal IdG(UTG(A1, . . . , Am)), in case G is

a cyclic p-group, and about the statements obtained when we work with the minimal varieties

of associative G-graded PI-algebras, of finite basic rank. Moreover, we dedicate this final part

to discussing about some results whose proofs were done, in this thesis, differently from those

presented in [22]; also mentioning other results obtained in [22].
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Chapter 1

Preliminaries and the algebras

UTG(A1, . . . , Am)

Let G be a finite abelian group and let F be a field of characteristic zero. In this chapter,

we shall give a general review of several concepts related to PI-theory. In particular, we will

present the definition of G-graded F -algebras and we will give some important examples, with

special emphasis on the G-graded upper block triangular matrix algebra UTG(A1, . . . , Am),

where A1, . . . , Am are graded subalgebras of matrix algebras endowed with elementary gradings.

Moreover, we will recall the definition of the TG-ideal of G-graded polynomial identities, the

sequence ofG-graded codimensions and theG-exponent of aG-graded algebra. Furthermore, we

will introduce the minimal varieties and the minimal G-graded algebras, and we will establish

relevant connections between these concepts. We highlight that, throughout this thesis, all

algebras which we consider are associative and over F .

1.1 G-graded algebras

Firstly, for any positive integers u and v such that u ≤ v, let us define

[u, v] := {u, u+ 1, . . . , v − 1, v}.

Given a finite set X, we denote by Sym(X) the symmetric group on X, whose elements are

all bijective functions from X to X. If X = [1, u], for some positive integer u, then we write

Sym(X) = Sym(u).

An algebra A is said to be G-graded if, for each g ∈ G, there exists a vector subspace Ag of
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A such that A decomposes into a direct sum of vector subspaces

A =
⊕
g∈G

Ag

satisfying

AgAh ⊆ Agh, for all g, h ∈ G.

For each g ∈ G, we refer to the subspace Ag as graded component of degree g of A. In particular,

if G = C2, a cyclic group of order 2, thus the G-graded algebras are known as superalgebras.

Given a G-graded algebra A = ⊕g∈GAg and an element a of A, then a can be written

uniquely as

a = ag1 + ag2 + · · ·+ agn ,

where agi ∈ Agi , for every i ∈ [1, n] and gi ̸= gj for all i, j ∈ [1, n], with i ̸= j. If a = ag for

some g ∈ G, then we say that a is homogeneous of degree g. In this case, we denote the degree

of a homogeneous element a = ag ∈ Ag by |a|A and thus |a|A = g. Denoting by 1G the identity

element of G, the G-grading of A is called trivial if Ag is equal to zero, for all g ̸= 1G. Notice

that every algebra A admits at least the trivial G-grading. Moreover, if A is unitary and all

non-zero homogeneous elements of A are invertible, then A is called a graded skew field.

We define the support of a G-graded algebra A as

Supp(A) := {g ∈ G | Ag ̸= 0}.

We remark that, in general, Supp(A) is not a subgroup of G.

If a vector subspace V of A is of the form

V =
⊕
g∈G

(V ∩ Ag),

then we say that V has a G-grading induced from A and we shall refer to the subspace V

as G-graded (or, shortly, as graded). Similarly, we define G-graded subalgebras and G-graded

two-sided ideals of A.

Let A = ⊕g∈GAg and B = ⊕g∈GBg be two G-graded algebras and φ : A → B a homo-

morphism of algebras. We say that φ is a homomorphism of G-graded algebras (or a G-graded

homomorphism) if φ(Ag) ⊆ Bg, for all g ∈ G. In particular, φ is said to be a G-graded embed-

ding if φ is a G-graded injective homomorphism. Moreover, if φ is an isomorphism of algebras

and φ(Ag) = Bg, for all g ∈ G, then φ is called an isomorphism of G-graded algebras (or a

G-graded isomorphism) and, in this case, we say that A is graded-isomorphic to B and we write
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A ∼=G B. Furthermore, the G-graded homomorphisms φ : A → A are called G-graded endo-

morphisms, and the G-graded isomorphisms φ : A → A are called G-graded automorphisms of

A.

At this point, we present an important example ofG-graded algebra, with a suitable grading,

which will be essential throughout this work. Let Mk(F ) be the k × k matrix algebra over F .

When convenient, such matrix algebra will be simply denoted by Mk, as well as the vector

space Mu×v(F ) of all matrices, over F , with u rows and v columns, will be denoted by Mu×v.

Moreover, for each i ∈ [1, u] and j ∈ [1, v], we denote by eij the (i, j)-matrix unit of Mu×v. We

notice that Mk =Mk×k.

Fixed any k-tuple g̃ = (g1, . . . , gk) ∈ Gk, we define a G-grading on A :=Mk by setting

Ah := spanF{eij | g−1
i gj = h}, for each h ∈ G.

We refer to this G-grading as an elementary G-grading (or, shortly, an elementary grading).

Note that, by the definition, for each i, j ∈ [1, k], the matrix unit eij is homogeneous with

degree g−1
i gj. Conversely, if all matrix units eij are homogeneous, then the G-grading on A

is elementary (see [13]). We remark that, any elementary grading on A is induced by a map

α : [1, k] → G, by setting the degree of eij equal to

α(i)−1α(j), for all i, j ∈ [1, k].

In this case, we shall denote the matrix algebra A endowed with the elementary grading induced

by the map α (or by the k-tuple g̃) as (A,α) (or as (A, g̃)) and we denote by |a|α the degree of

the homogeneous element a in A.

Moreover, we denote by Iα the image of α, that is,

Iα := α([1, k]),

and we define the weight map wα : G→ N as

wα(h) := |{i | 1 ≤ i ≤ k, α(i) = h}|.

We remark that wα(h) = 0, when h /∈ Iα. Hence Iα = {h ∈ G | wα(h) ̸= 0}. Moreover, if there

exists c ∈ N∗ such that

wα(h) = c, for all h ∈ Iα,

thus we say that all fibers of the map α are equipotent. Finally, a G-grading of a graded

subalgebra B of Mk is called elementary if it is the restriction of an elementary G-grading of
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Mk.

A useful and important class of G-graded algebras studied by several authors are the so-

called G-simple algebras. Given a G-graded algebra A = ⊕g∈GAg, we say that A is G-simple if

A2 ̸= 0 and A has no non-trivial graded ideals. Throughout this work, we will deal with these

algebras in several results.

We remember that, if F is algebraically closed and G = C2 = {0̄, 1̄}, a cyclic group of

order 2, thus the finite dimensional G-simple algebras, known as the simple superalgebras, are

graded-isomorphic to one of the following superalgebras (see [35]):

(i) Mk,l :=

(
A B

C D

)
, where k ≥ l ≥ 0, k ̸= 0, A ∈ Mk, D ∈ Ml, B ∈ Mk×l and C ∈ Ml×k,

endowed with the grading (Mk,l)0̄ :=

(
A 0

0 D

)
and (Mk,l)1̄ :=

(
0 B

C 0

)
;

(ii) Mn(F ⊕cF ), where c2 = 1, with the grading (Mn(F ⊕cF ))0̄ :=Mn and (Mn(F ⊕cF ))1̄ :=
cMn.

Notice that the superalgebras involved in this classification can be seen endowed with ele-

mentary gradings. In fact, in case (i), its elementary C2-grading can be induced by the map

α : [1, k+ l] → G such that α(i) = 0̄, if i ∈ [1, k], and α(i) = 1̄, if i ∈ [k+1, k+ l]. On the other

hand, in case (ii), it is enough to note that we can see such algebra as a graded subalgebra of

Mn,n through the application on the elements of Mn(F ⊕ cF ) to Mn,n:

C + cD 7→

(
C D

D C

)
,

where C,D ∈Mn.

In case G = Cp = {0̄, 1̄, . . . , p− 1} is a group of prime order p and the field F is alge-

braically closed, Di Vincenzo, da Silva and Spinelli ([17]) obtained a characterization of the

finite dimensional G-simple F -algebras by applying the results established by Bahturin, Sehgal

and Zaicev, in [9], and assertions stated by Di Vincenzo and Nardozza, in [21]. More precisely,

they defined the following graded subalgebra of Mp with the elementary grading induced by

the map α : [1, p] → G such that α(i) = i− 1:

Dp :=





d0 d1 · · · dp−2 dp−1

dp−1 d0
. . . dp−2

...
. . . . . . . . .

...

d2
. . . . . . d1

d1 d2 · · · dp−1 d0


| d0, d1, . . . , dp−1 ∈ F


,
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and proved that any finite dimensional G-simple algebra is graded-isomorphic to one of the

following G-graded algebras:

(i) Mk with an elementary grading;

(ii) the graded subalgebra Mk(Dp) of Mkp endowed with an elementary grading,

for some positive integer k.

In this thesis, when the group G is a finite cyclic group, we will present a characterization of

the finite dimensional G-simple F -algebras as graded subalgebras of matrix algebras endowed

with some elementary gradings (see Section 3.1).

In the sequel, we will construct, for any m-tuple (A1, . . . , Am) of graded subalgebras of

(Md1 , α̃1), . . . , (Mdm , α̃m), theG-graded upper block triangular matrix algebra UTG(A1, . . . , Am).

Firstly, given the matrix algebras Md1 , . . . ,Mdm , let U := UT (d1, . . . , dm) be the corres-

ponding upper block triangular matrix algebra, of size d1, . . . , dm, that is,

UT (d1, . . . , dm) =


Md1 Md1×d2 · · · Md1×dm

0 Md2 · · · Md2×dm
...

...
. . .

...

0 0 · · · Mdm

 .

Let us write any of its elements as blocks (aij), where i, j ∈ [1,m] and moreover

aij ∈Mdi×dj if 1 ≤ i ≤ j ≤ m and aij = 0Mdi×dj
otherwise.

For each l ∈ [1,m], let us define

η0 := 0, ηl :=
l∑

ι=1

dι and Bll := [ηl−1 + 1, ηl].

Still, fixed 1 ≤ u ≤ v ≤ m, for each i ∈ [1, du], j ∈ [1, dv], we denote the matrix unit of Mηm ,

corresponding to the position (i, j) of the block

Uu,v := {(ast) ∈ U | ast = 0Mds×dt
, for all (s, t) ̸= (u, v)},

by

E
(u,v)
ij := Eηu−1+i,ηv−1+j,

where Eηu−1+i,ηv−1+j is the (ηu−1 + i, ηv−1 + j)-matrix unit of Mηm . By a direct computation

we obtain

E
(u,v)
ij E

(u′,v′)
i′j′ = δvu′δji′E

(u,v′)
ij′ , (1.1)
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where δvu′ and δji′ is the Kronecker delta.

Now, given an m-tuple (A1, . . . , Am) of graded subalgebras of (Md1 , α̃1), . . . , (Mdm , α̃m), we

define

UT (A1, . . . , Am) := {(aij) ∈ U | all ∈ Al, l ∈ [1,m] and aij ∈Mdi×dj , 1 ≤ i < j ≤ m}.

Let A := UT (A1, . . . , Am). For every 1 ≤ u ≤ v ≤ m, we set the block

Au,v := A ∩Uu,v.

Assume that each Al is a graded subalgebra of Mdl with respect to the elementary grading

defined by α̃l. We define the map α̃ : [1, ηm] → G as

α̃(i) = α̃l(i− ηl−1),

where l ∈ [1,m] is the unique integer such that i ∈ Bll. Let us consider in the matrix algebra

Mηm the elementary grading defined by the map α̃. Clearly Al,l and UT (A1, . . . , Am) are G-

graded subalgebras of (Mηm , α̃), for all l ∈ [1,m] and, moreover, Al,l is graded-isomorphic to

the given G-graded subalgebra Al of (Mdl , α̃l).

We say that an elementary G-grading β̃ on Mηm is α̃-admissible if, and only if, Al,l is a

graded subalgebra of (Mηm , β̃) for all l ∈ [1,m] and, moreover, Al,l (with the grading induced

by β̃) is graded-isomorphic to the given G-graded subalgebra Al of (Mdl , α̃l). In this thesis,

we are also interested in describing conditions of the existence of a G-graded isomorphism

between (UT (A1, . . . , Am), α̃) and (UT (A1, . . . , Am), β̃), for any α̃-admissible grading β̃, in

case A1, . . . , Am are finite dimensional G-simple algebras.

Although the grading α̃ depends strongly on the sequence (α̃1, . . . , α̃m), when convenient

we will indicate the G-graded algebra A = (UT (A1, . . . , Am), α̃) simply by UTG(A1, . . . , Am).

Given 1 ≤ u ≤ v ≤ m, we denote

A[u,v] := (UT (Au, . . . , Av), α̃[u,v]),

where the map α̃[u,v] : [1, ηv − ηu−1] → G is defined as α̃[u,v](i) = α̃(ηu−1 + i).

1.2 G-graded polynomial identities and TG-ideals

In this section, we present some of the main concepts of the PI-theory which will be used

along this work. In particular, we recall the definition of TG-ideal of G-graded polynomial
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identities satisfied by G-graded algebras.

Consider disjoint countable sets Xg := {xg1, x
g
2, . . .} of non-commutative variables, with

g ∈ G. Define XG := ∪g∈GXg and let F ⟨X;G⟩ be the unitary free associative algebra freely

generated by XG. The algebra F ⟨X;G⟩ has a natural G-grading, where the variables from Xg

have degree g and the unit of F ⟨X;G⟩ has degree 1G in this G-grading. Given a monomial

m = x
gi1
1 x

gi2
2 · · · xginn in F ⟨X;G⟩, we define the homogeneous degree of m as

|m|F ⟨X;G⟩ := |xgi11 x
gi2
2 · · ·xginn |F ⟨X;G⟩ = gi1gi2 · · · gin .

We refer to this algebra as the free G-graded algebra over F .

Let f = f(x
gi1
1 , . . . , x

gin
n ) be an element in F ⟨X;G⟩. If the variable x

gij
j appears once in

each monomial of f , then we say that f is a linear polynomial in x
gij
j . If f is linear in all its

variables x
gi1
1 , . . . , x

gin
n , we call f a multilinear polynomial of degree n.

We say that f = f(x
gi1
1 , . . . , x

gin
n ) ∈ F ⟨X;G⟩ is a G-graded polynomial identity of a G-graded

algebra A = ⊕g∈GAg if

f(a1, . . . , an) = 0, for all a1 ∈ Agi1
, . . . , an ∈ Agin

.

A G-graded ideal I of F ⟨X;G⟩ is called a TG-ideal (or a graded T -ideal) if I is stable under all

G-graded endomorphism of F ⟨X;G⟩. Moreover, we define IdG(A) as the set of all the G-graded

polynomial identities satisfied by A, or, in shortly,

IdG(A) = {f ∈ F ⟨X;G⟩ | f is a G-graded polynomial identity for A}.

It follows that IdG(A) is a TG-ideal of F ⟨X;G⟩ and, once F is a field of characteristic zero,

similarly to the ordinary case, IdG(A) is completely determined by the multilinear polynomials

it contains. Also, we say that A is a G-graded F -algebra with a polynomial identity (or simply

a G-graded PI-algebra) if A satisfies a non-trivial ordinary polynomial identity, that is, if there

exists a non-zero polynomial f(x1, . . . , xn) ∈ F ⟨X⟩ such that f(a1, . . . , an) = 0, for all ai ∈ A.

In the sequel, we present some definitions related to TG-ideals, which can be found in [6]

and [7].

Definition 1.2.1. Let I be a TG-ideal of the free graded algebra F ⟨X;G⟩.

(i) We say that I is a verbally prime TG-ideal if for any TG-ideals I1 and I2 of F ⟨X;G⟩ such
that I1I2 ⊆ I, we have I1 ⊆ I or I2 ⊆ I.

(ii) If there exist TG-ideals I1 ̸= I and I2 ̸= I such that I = I1I2, then I is called a decompos-

able TG-ideal. Otherwise, we say that I is indecomposable.
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The next step will be to prove that the TG-ideal IdG(A) is indecomposable whenever A is a

G-simple algebra. To this end, we introduce the definition of verbally prime algebras and, in

the sequel, we characterize such algebras by means of some properties related to the suitable

G-graded ideals.

Let A = ⊕g∈GAg be a G-graded algebra. We say that A is verbally prime if the TG-ideal

IdG(A) is verbally prime. Given a TG-ideal I of F ⟨X;G⟩, we define

I(A)G := {f(a1, . . . , an) | f = f(x
gi1
1 , . . . , xginn ) ∈ I and a1 ∈ Agi1

, . . . , an ∈ Agin
}.

It is clear that I(A)G is a G-graded ideal of A. Furthermore, we notice that I(A)G = 0 if, and

only if, I ⊆ IdG(A). Given TG-ideals I1 and I2 of F ⟨X;G⟩, it holds

I1I2(A)G = I1(A)GI2(A)G. (1.2)

As an immediate consequence of the previous definitions and remarks, we obtain the fol-

lowing:

Lemma 1.2.2. Let A = ⊕g∈GAg be a G-graded algebra. Then A is verbally prime if, and only

if, for any TG-ideals I1 and I2 of F ⟨X;G⟩ such that I1(A)GI2(A)G = 0, we have I1(A)G = 0 or

I2(A)G = 0, or both.

Finally, as an application of the above lemma, we can prove the next statement.

Lemma 1.2.3. Let A = ⊕g∈GAg be a G-simple algebra. Then A is verbally prime. Conse-

quently, IdG(A) is indecomposable.

Proof. Consider I1 and I2 TG-ideals of F ⟨X;G⟩ such that I1(A)GI2(A)G = 0. Assume that

I1(A)G ̸= 0 and I2(A)G ̸= 0. Since A is G-simple, it follows that I1(A)G = I2(A)G = A and

then

0 ̸= A2 = I1(A)GI2(A)G = 0,

which is an absurd. Therefore, I1(A)G = 0 or I2(A)G = 0, and, by invoking Lemma 1.2.2, we

have that A is verbally prime, as desired.

The fact that A is verbally prime is enough to obtain that IdG(A) is indecomposable.

We will see in Example 5.3.3 an indecomposable TG-ideal which can not be generated by a

finite dimensional G-simple algebra.

In order to finish this section, we present two results. The first is associated to G-graded

embeddings between finite dimensional G-simple F -algebras and it was stated by O. David, in

[14]. The second establishes an important property involving products of TG-ideals related to

algebras A = (UT (A1, . . . , Am), α̃) seen in Section 1.1.
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Theorem 1.2.4 (Theorem 1 of [14]). Let G be an abelian group and F be an algebraically

closed field of characteristic zero. Consider two finite dimensional G-simple F -algebras A and

B. There exists a G-graded embedding φ : A→ B if, and only if, IdG(B) ⊆ IdG(A).

Lemma 1.2.5. Let A1, . . . , Am be graded subalgebras of (Md1 , α̃1), . . . , (Mdm , α̃m), respectively.

Given A = UTG(A1, . . . , Am) and u ≥ 1 an integer, then for any integers c1, c2, . . . , cu such that

1 ≤ c1 < c2 < · · · < cu < m,

IdG(A
[1,c1])IdG(A

[c1+1,c2]) · · · IdG(A
[cu+1,m]) ⊆ IdG(A).

Proof. Notice that if m = 1, thus the statement is trivial. Assume m ≥ 2 and take graded

polynomials

f1 ∈ IdG(A
[1,c1]), f2 ∈ IdG(A

[c1+1,c2]), . . . , fu ∈ IdG(A
[cu+1,m]).

Given i ∈ [1, u], we remark that any graded evaluation ρi : F ⟨X;G⟩ → A, of the polynomial fi

in A, satisfies

ρi(fi) =
∑

1≤p≤q≤m

a(i)pq ,

where a
(i)
pq ∈ Ap,q are such that a

(i)
pq = 0A, for all ci−1 + 1 ≤ p ≤ q ≤ ci, with c0 := 0. Therefore,

since Ai,jAi′,j′ = δj,i′Ai,j′ , we conclude that f1f2 · · · fu ∈ IdG(A).

1.3 Kemer polynomials

Let I be a TG-ideal of identities of a finite dimensional G-graded algebra. In this section,

we will define the so-called Kemer polynomials for I based on [5]. To this end, assume that

G = {g1, . . . , gn}. In addition, since F is a field of characteristic zero, we have that I is

generated by multilinear graded polynomials f which are strongly homogeneous, that is, every

monomial in f has the same homogeneous degree in the G-grading.

Definition 1.3.1. Let f ∈ F ⟨X;G⟩ be a multilinear G-graded polynomial which is strongly

homogeneous. Given g ∈ G, let Sg = {xg1, . . . , xgm} be a subset of Xg and consider YG := XG\Sg

the set of the remaining variables. We say that f is alternating in the set Sg (or that the

variables of Sg alternate in f) if there exists a (multilinear, strongly homogeneous) G-graded

polynomial h(Sg;YG) = h(xg1, . . . , x
g
m;YG) such that

f(xg1, . . . , x
g
m;YG) =

∑
σ∈Sym(m)

(−1)σh(xgσ(1), . . . , x
g
σ(m);YG).
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Moreover, if Sgi1
, . . . , Sgip

are p disjoint sets of variables of XG, where Sgij
⊂ Xgij

, for all

j ∈ [1, p], we say that f is alternating in Sgi1
, . . . , Sgip

if f is alternating in each set Sgij
.

Let us consider polynomials which alternate in ν disjoint sets of the form Sg, for all g ∈ G.

If the sets Sg have the same cardinality, say dg, for every g ∈ G, then we say that f is ν-fold

(dg1 , . . . , dgn)-alternating. Moreover, we need to consider polynomials which, in addition to the

alternating in such above sets, they alternate in t disjoint sets Kg ⊂ Xg, and also disjoint to

the previous sets, such that |Kg| = dg + 1 (where the elements g’s that correspond to the Kg’s

need not be different).

Definition 1.3.2. Let Xl,g = {xg1, . . . , x
g
l } be a set of l variables of degree g and let Y =

{y1, . . . , yl} be a set of l ungraded variables. The g-Capelli polynomial cl,g (of degree 2l) is the

polynomial obtained by alternating the set xgi ’s in the monomial xg1y1x
g
2y2 · · · x

g
l yl, that is,

cl,g :=
∑

σ∈Sym(l)

(−1)σxgσ(1)y1x
g
σ(2)y2 · · ·x

g
σ(l)yl.

The g-Capelli polynomial cl,g is in the TG-ideal I if all the G-graded polynomials obtained

from cl,g through substitutions of the form yi 7→ yhi , for some h ∈ G, are in I.

Remark 1.3.3. Since I is a TG-ideal of identities of a finite dimensional G-graded algebra,

then by Lemma 3.4 of [5], for every g ∈ G, there exists an integer lg such that the TG-ideal I

contains clg ,g.

Corollary 1.3.4 (Corollary 3.5 of [5]). Let I be a TG-ideal of identities of a finite dimensional

G-graded algebra. If f is a multilinear G-graded polynomial, strongly homogeneous and alter-

nating on a set Sg of cardinality lg, then f ∈ I. Consequently there exists an integer mg which

bounds (from above) the cardinality of the g-alternating sets in any G-graded polynomial which

is not in I.

In order to introduce the Kemer polynomials for I, by considering Nn = N× · · · × N︸ ︷︷ ︸
n times

, let us

define a partial order ≼ on Nn×N. Firstly, given δ = (δ1, . . . , δn) and ρ = (ρ1, . . . , ρn) elements

of Nn, we write (δ1, . . . , δn) 4 (ρ1, . . . , ρn) if, and only if, δi ≤ ρi, for all i ∈ [1, n]. Now, given

(δ, s) and (ρ, s′) elements of Nn × N, we write (δ, s)≼(ρ, s′) if, and only if, either

(i) δ ≺ ρ, that is, δ 4 ρ and, for some j, δj < ρj, or

(ii) δ = ρ and s ≤ s′.

In the sequel, we will define the Kemer points of I, which will be denoted by Kemer(I).

Such Kemer points will be given by a finite set of points in Nn × N. We start by defining the
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set Ind(I)0 as:

Ind(I)0 := {δ ∈ Nn | for each ν ∈ N, ∃ f /∈ I such that f is ν-fold δ-alternating}.

In virtue of Corollary 1.3.4, we have that the set Ind(I)0 is bounded (finite). Furthermore,

if δ ∈ Ind(I)0, then δ
′ ∈ Ind(I)0, for any δ

′ 4 δ (see Lemma 3.7 of [5]). Now, given ν ∈ N, we
set

∆ν := {δ ∈ Nn | ∃ f /∈ I such that f is ν-fold δ-alternating}.

Notice that

∩ν∈N∆ν = Ind(I)0.

On the other hand, if ν ≤ ν ′, thus ∆ν′ ⊆ ∆ν , and once each ∆ν is finite (see Corollary 1.3.4),

the chain

∆1 ⊇ ∆2 ⊇ · · ·

stabilizes, that is, there exists γ ∈ N such that

∆ν = ∆γ, for all ν ≥ γ, (1.3)

and, hence, Ind(I)0 = ∆γ.

Let ∆0
ν be the extremal points of ∆ν , that is, the points δ ∈ ∆ν such that for any ρ ∈ ∆ν

satisfying δ 4 ρ, it is valid that ρ = δ. Note that ∆0
ν = ∆0

γ, for all ν ≥ γ.

We also set

Ων := {f ∈ F ⟨X;G⟩ | f /∈ I and f is ν-fold δ-alternating, for some δ ∈ ∆ν}.

Clearly Ων = ∪δ∈ΩνΩδ,ν , where

Ωδ,ν := {f ∈ F ⟨X;G⟩ | f /∈ I and f is ν-fold δ-alternating}.

At this stage, fixed ν ∈ N, δ = (δg1 , . . . , δgn) ∈ ∆ν and f ∈ Ωδ,ν , let sI(δ, ν, f) be the

number of alternating g-homogeneous sets (any g ∈ G) of disjoint variables, of cardinality

δg + 1. We claim that if γ satisfies (1.3), then for any fixed pair (δ, ν) with δ ∈ ∆0
γ and

ν ≥ γ, we have {sI(δ, ν, f)}f∈Ωδ,ν
is bounded. Actually, in this case, if {sI(δ, ν, f)}f∈Ωδ,ν

is not

bounded, thus there exists a sequence of polynomials f1, f2, . . . in Ωδ,ν such that si = sI(δ, ν, fi)

and limi→∞ si = ∞. Since the group G is finite we obtain, by the pigeonhole principle, that

there exist g ∈ G and a subsequence fi1 , fi2 , . . . such that limk→∞ sik,g = ∞, where sik,g is the

number of alternating g-homogeneous sets of cardinality δg + 1 in fik . However, this implies
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that the point δ′ defined as δ′g = δg + 1 and δ′h = δh, for h ̸= g, belongs to ∆ν (actually, it is

enough to take k such that sik,g ≥ ν and thus fik is ν-fold δ′-alternating). Once ν ≥ γ, we have

δ ∈ ∆0
γ = ∆0

ν , and thus since δ 4 δ′ and δ′ ̸= δ, we obtain a contradiction.

Let sI(δ, ν) = max{sI(δ, ν, f)}f∈Ωδ,ν
. Since the sequence sI(δ, ν) is monotonically decreasing

as a function of ν, there exists an integer µ = µ(I, ν) ≥ γ for which the sequence stabilizes,

that is, sI(δ, ν) is constant for all ν ≥ µ. In this sense, we set

sI(δ) := limν→∞ sI(δ, ν) = sI(δ, µ).

Once the set ∆0
γ is finite and δ ∈ ∆0

γ , take µ to be the maximum of all µ’s considered above.

Given a TG-ideal I of identities of a finite dimensional G-graded algebra, we define the

Kemer set of I as the set of points:

Kemer(I) := {(δ, sI(δ)) | δ ∈ ∆0
γ}.

The elements of Kemer(I) are called Kemer points of I.

Finally, we present the definition of Kemer polynomials for a TG-ideal I.

Definition 1.3.5. Let I be a TG-ideal of identities of a finite dimensional G-graded algebra.

(i) Let (δ, sI(δ)) be a Kemer point of the TG-ideal I. A graded polynomial f is said to be

a Kemer polynomial for the point (δ, sI(δ)) if f is not in I and it has at least µ-folds of

alternating g-sets of cardinality δg (small sets) for all g ∈ G and sI(δ) homogeneous sets

of disjoint variables Yg (some g in G) of cardinality δg + 1 (big sets).

(ii) A polynomial f is Kemer for the TG-ideal I if it is Kemer for a Kemer point of I.

Note that a polynomial f cannot be Kemer simultaneously for different Kemer points of I.

In fact, assume that (δ, sI(δ)) and (δ′, sI(δ
′)) are both points for a Kemer polynomial f of I,

with δ ̸= δ′. Consider δ′′ defined as δ′′g = max{δg, δ′g}, for all g ∈ G. Consequently, we have

δ′′ ∈ ∆µ, with δ, δ′ 4 δ′′ and δ′′ ̸= δ or δ′′ ̸= δ′, and this contradicts the fact that δ, δ′ are

extremal points of ∆µ = ∆γ.

Let A be a finite dimensional G-graded F -algebra. We say that (δ, l) is a Kemer point of

A if (δ, l) is a Kemer point of IdG(A). Let us finish this section by investigating the Kemer

points of the algebra A. First, we recall that, by the generalization of the Wedderburn-Malcev

Theorem (see [28]), it is valid that

A = Ass + J(A),
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where Ass = A1⊕· · ·⊕Am (direct sum as algebras) is a maximal semisimple graded subalgebra

of A, with A1, . . . , Am G-simple algebras. Moreover J := J(A), the Jacobson radical of A, is a

graded ideal.

By denoting the nilpotency index of J by nA, we define the (n+ 1)-tuple

G− Par(A) := (dimF (Ass)g1 , . . . , dimF (Ass)gn , nA − 1) ∈ Nn × N.

In the sequel, we present a relation between the Kemer points of A and G− Par(A).

Proposition 1.3.6 (Proposition 4.4 of [5]). If (δ, l) = (δg1 , . . . , δgn , l) is a Kemer point of A,

then (δ, l) ≼ G− Par(A).

As a corollary we obtain that:

Corollary 1.3.7. If G − Par(A) is a Kemer point of A, then it is the unique Kemer point of

A.

Proof. Denote I := IdG(A). Let (δ, sI(δ)) be a Kemer point of A and assume that G −
Par(A) = (δ′, sI(δ

′)) is a Kemer point of A. By invoking the above proposition, it follows that

(δ, sI(δ))≼(δ′, sI(δ
′)), that is, either

(i) δ ≺ δ′, or

(ii) δ = δ′ and sI(δ) ≤ sI(δ
′).

Since δ, δ′ ∈ ∆0
γ, it follows that condition (i) is not satisfied. Thus δ = δ′ and hence sI(δ) =

sI(δ
′), which implies

(δ, sI(δ)) = (δ′, sI(δ
′)) = G− Par(A).

In Chapter 5, we will construct the Kemer polynomials for the G-graded upper block tri-

angular matrix algebra UTG(A1, . . . , Am), in case G is a finite cyclic group and A1, . . . , Am are

finite dimensional G-simple algebras.

1.4 G-graded codimension, G-exponent and varieties

We start this section by presenting the concept of G-graded codimension of a G-graded

algebra. To this end, for all n ≥ 1, we consider PG
n as the F -vector space generated by the
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multilinear polynomials of degree n of F ⟨X;G⟩ in the variables xgi , for g ∈ G and i ∈ [1, n].

Given a G-graded algebra A, we define

cGn (A) := dimF
PG
n

PG
n ∩ IdG(A)

and we refer to this non-negative integer as the nth G-graded codimension of A.

Let A be a G-graded PI-algebra. It is well known that its sequence of G-graded codimensions

{cGn (A)}n≥1 is exponentially bounded (see Lemma 10.1.3 of [28]). We define the G-graded

exponent, or simply G-exponent, of the G-graded PI-algebra A as

expG(A) := lim
n→∞

n
√
cGn (A).

If A is finite dimensional and the field F is algebraically closed, then such G-exponent exists and

is a non-negative integer (see [2]). In the sequel, we exhibit a way to calculate the G-exponent,

which was presented by Aljadeff, Giambruno and La Mattina in [2].

Given a finite dimensional G-graded F -algebra A, by the previous section, we have A =

Ass + J = A1 ⊕ · · · ⊕ Am + J , where A1, . . . , Am are G-simple algebras and J , the Jacobson

radical of A, is a graded ideal. Consider all products

Ar1JAr2J · · ·Arl−1
JArl ̸= 0, (1.4)

where Ar1 , . . . , Arl are distinct G-simple subalgebras of the set {A1, . . . , Am}. We define

q := max dimF (Ar1 ⊕ · · · ⊕ Arl)

as being the maximum dimension among the dimension of all the subalgebras Ar1 ⊕ · · · ⊕ Arl

such that Ar1 , . . . , Arl satisfy condition (1.4). Therefore, it holds

q = expG(A). (1.5)

At this stage, given a TG-ideal I of F ⟨X;G⟩, we define the variety of G-graded algebras VG

(determined by I) as the class of all G-graded algebras A such that I ⊆ IdG(A). In short,

VG := VG(I) = {A | I ⊆ IdG(A)}.

We denote the TG-ideal I of F ⟨X;G⟩ associated to VG as IdG(VG). If IdG(VG) = IdG(A), for
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a G-graded algebra A, then we say that the variety VG is generated by A and write

VG = varG(A).

Moreover, in this case, if A is a finitely generated G-graded PI-algebra, then VG is called a

variety of finite basic rank. If F is an algebraically closed field of characteristic zero, we can

assume that any variety VG of finite basic rank is generated by a finite dimensional G-graded

PI-algebra (see [5] or [33]).

In case VG = varG(A), the variety generated by a G-graded PI-algebra A, we set the nth

G-graded codimension and the G-exponent of the variety VG, respectively, as

cGn (VG) := cGn (A), for every n ≥ 1, and expG(VG) := expG(A).

1.5 Minimal varieties and minimal G-graded algebras

In this section, firstly, we recall the concept of minimal varieties of G-graded PI-algebras

of a given G-exponent. In the sequel, we will give the definition of minimal G-graded F -

algebras, which is a natural generalization of the well known minimal superalgebras, introduced

by Giambruno and Zaicev in [26].

Definition 1.5.1. Let VG be a variety of G-graded PI-algebras. We say that VG is minimal

of G-exponent d if expG(VG) = d and for every proper subvariety UG of VG one has that

expG(UG) < d.

Let V be a variety of associative PI-algebras over F . In [27], Giambruno and Zaicev described

the minimal varieties V of finite basic rank, of a given exponent, by means of suitable generating

algebras. More precisely, they showed that such variety V is minimal if, and only if, V is

generated by an upper block triangular matrix algebra UT (d1, . . . , dm). Denote by Cn the

finite cyclic group of order n. If n = p is an arbitrary prime number, in 2019, Di Vincenzo,

da Silva and Spinelli proved that a variety VCp of Cp-graded PI-algebras of finite basic rank,

with respect to a given Cp-exponent, is minimal if, and only if, VCp is generated by a Cp-graded

algebra UTCp(A1, . . . , Am), where A1, . . . , Am are finite dimensional Cp-simple algebras (see

[17]).

Let F be an algebraically closed field. In this work, more precisely in Chapter 5, we will

take a new step towards the classification of such minimal varieties in case n is any positive

integer. In particular, we will prove that they are generated by a suitable Cn-graded upper

block triangular matrix algebra UTCn(A1, . . . , Am), with A1, . . . , Am being finite dimensional

Cn-simple algebras. Moreover, by assuming that UTCn(A1, . . . , Am) satisfies at least one of the
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conditions (i), (ii) or (iii) of Theorem 5.3.7, we also will show that varCn(UTCn(A1, . . . , Am))

is minimal.

Definition 1.5.2. A G-graded algebra A is said minimal if it is finite dimensional and either

A is a G-simple algebra or A = Ass + J(A) where

(i) Ass = A1 ⊕ · · · ⊕ Am, with A1, . . . , Am G-simple algebras and m ≥ 2;

(ii) there exist homogeneous elements w12, . . . , wm−1,m ∈ J(A) and minimal homogeneous

idempotents e1 ∈ A1, . . . , em ∈ Am such that

eiwi,i+1 = wi,i+1ei+1 = wi,i+1, for all i ∈ [1,m− 1]

and

w12w23 · · ·wm−1,m ̸= 0A;

(iii) w12, . . . , wm−1,m generate J(A) as a two-sided ideal of A.

Clearly any minimal G-graded algebra A admits a vector space decomposition given by

A =
⊕

1≤i≤j≤m

Aij,

where

Aij :=

{
Ai if i = j,

Aiwi,i+1Ai+1 · · ·Aj−1wj−1,jAj if i < j.

Moreover J(A) = ⊕i<jAij and AijAi′j′ = δji′Aij′ . Still, for all 1 ≤ u ≤ v ≤ m, we define

A[u,v] :=
⊕

u≤i≤j≤v

Aij,

and, for each 1 < ℓ < m, we set

A(ℓ̌) :=
⊕

1≤i≤j≤m
i̸=ℓ̸=j

A′
ij,

where

A′
ij :=

{
Aiwi,i+1Ai+1 · · ·Aℓ−1wℓ−1,ℓwℓ,ℓ+1Aℓ+1 · · ·Aj−1wj−1,jAj if i < ℓ < j,

Aij otherwise.

Example 1.5.3. Let G = C4 = {0̄, 1̄, 2̄, 3̄}, a cyclic group of order 4. Moreover, consider
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A1 = (M2, α̃1), A2 = (M2, α̃2) and A3 = (M3, α̃3), where

(α̃1(1), α̃1(2)) = (0̄, 1̄), (α̃2(1), α̃2(2)) = (1̄, 2̄) and (α̃3(1), α̃3(2), α̃3(3)) = (1̄, 2̄, 3̄).

Finally, let A = (UT (A1, A2, A3), α̃).

For each l ∈ [1, 3], take the minimal homogenenous idempotents as

el := E
(l,l)
11

and, for each l ∈ [1, 2], take the homogeneous radical elements as

wl,l+1 := E
(l,l+1)
11 .

Clearly A is a G-graded minimal algebra.

Moreover, in this case, the decomposition of A in the form A =
⊕

1≤i≤j≤mAij can be given

as

A =



F F F F F F F

F F F F F F F

0 0 F F F F F

0 0 F F F F F

0 0 0 0 F F F

0 0 0 0 F F F

0 0 0 0 F F F


,

where, for each 1 ≤ i ≤ j ≤ 3, Aij corresponds to the block of the position (i, j). For instance,

A23 = spanF{E35,E36,E37,E45,E46,E47}. Furthermore, we have, for instance,

A[1,2] =



F F F F 0 0 0

F F F F 0 0 0

0 0 F F 0 0 0

0 0 F F 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


and A(2̌) =



F F 0 0 F F F

F F 0 0 F F F

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 F F F

0 0 0 0 F F F

0 0 0 0 F F F


.

Remark 1.5.4. Let A = Ass + J = A1 ⊕ · · · ⊕Am + J be a minimal G-graded algebra. Since,

from Definition 1.5.2, A1JA2J · · ·Am−1JAm ̸= 0, we conclude, by invoking (1.5), that

expG(A) = dimF (A1 ⊕ · · · ⊕ Am) = dimFAss.

Finally, we present some important technical results related to minimal varieties and mini-
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mal G-graded algebras. The first is a natural extension of Lemma 8.1.4 given in [28].

Lemma 1.5.5. Let A be a finite dimensional G-graded F -algebra. Then there exists a minimal

G-graded algebra B ⊆ A such that expG(B) = expG(A).

Proof. Firstly, we remember that, by the generalization of the Wedderburn-Malcev Theorem,

we have A = Ass+J, where Ass = A1⊕· · ·⊕Am (direct sum as algebras) is a maximal semisimple

graded subalgebra of A, with A1, . . . , Am G-simple algebras. Moreover J , the Jacobson radical

of A, is a graded ideal.

Consider n ≤ m such that

Ar1JAr2J · · ·Arn−1JArn ̸= 0 (1.6)

and dimF (Ar1 ⊕· · ·⊕Arn) is maximum, where Ar1 , . . . , Arn are distinct G-simple subalgebras of

the set {A1, . . . , Am}. Thus, there exist x1, . . . , xn−1 ∈ J and a1 ∈ Ar1 , . . . , an ∈ Arn satisfying

a1x1a2 · · · an−1xn−1an ̸= 0.

For each i, we can write xi =
∑

g∈G x
g
i , with xgi ∈ Jg, and ai =

∑
g∈G a

g
i , with agi ∈ (Ari)g.

Hence, there exist ε1, η1, . . . , ηn−1, εn ∈ G such that

aε11 x
η1
1 a

ε2
2 · · · aεn−1

n−1 x
ηn−1

n−1 a
εn
n ̸= 0.

This means that we can assume the elements x1, . . . , xn−1, a1, . . . , an as being homogeneous.

Let 11, . . . , 1n be the units of the algebras Ar1 , . . . , Arn , respectively. Then,

11(a1x1a2)12(x2a3)13 · · · 1n−1(xn−1an)1n ̸= 0.

Now, we remark that, for each j ∈ [1, n], there exist minimal graded idempotents ej1, . . . , ejkj ∈
(Arj)1G such that 1j = ej1 + · · ·+ ejkj . Thus

(e11 + · · ·+ e1k1)(a1x1a2)(e21 + · · ·+ e2k2)(x2a3) · · · (xn−1an)(en1 + · · ·+ enkn) ̸= 0,

which implies that there exist minimal graded idempotents e1 ∈ Ar1 , . . . , en ∈ Arn such that

e1(a1x1a2)e2(x2a3)e3 · · · en−1(xn−1an)en ̸= 0.

At this stage, we define the following homogeneous elements:

w12 := e1(a1x1a2)e2, w23 := e2(x2a3)e3, w34 := e3(x3a4)x4, . . . , wn−1,n := en−1(xn−1an)en.
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Since J is a two-sided ideal of A, one has that wi,i+1 ∈ J , for all i ∈ [1, n − 1]. Moreover, we

have

e1w12 = e1e1(a1x1a2)e2 = e1(a1x1a2)e2 = e1(a1x1a2)e2e2 = w12e2,

eiwi,i+1 = eiei(xiai+1)ei+1 = ei(xiai+1)ei+1 = ei(xiai+1)ei+1ei+1 = wi+1ei+1, for all i ∈ [2, n−1],

w12 · · ·wn−1,n = e1(a1x1a2)e2(x2a3)e3 · · · en−1(xn−1an)en ̸= 0.

Let B := Ar1 ⊕ · · · ⊕Arn + J(B) be the algebra generated by Ar1 , . . . , Arn , w12, . . . , wn−1,n.

Notice that B ⊆ A and J(B) is generated by the elements w12, . . . , wn−1,n. Therefore, according

to Definition 1.5.2, (1.6) and (1.5), we conclude that B is a minimal G-graded algebra such

that expG(B) = expG(A).

Theorem 1.5.6. Let VG be a variety of G-graded PI-algebras of finite basic rank. If VG is

minimal of G-exponent d, then there exists a minimal G-graded algebra A such that

VG = varG(A).

Proof. The fact that the variety VG is of finite basic rank allows us to conclude that, from

Theorem 1.1 of [5], there exists a finite dimensional G-graded algebra B over F such that

VG = varG(B) and expG(B) = d.

By invoking Lemma 1.5.5, it follows that there exists a minimal G-graded algebra A ⊆ B such

that expG(A) = expG(B). Thus IdG(B) ⊆ IdG(A) and, hence, A ∈ VG = varG(B). Once VG is

minimal and expG(A) = expG(B), we conclude the proof of the theorem.

As an application of the above theorem, we will see in Section 5.1 that if G is a finite cyclic

group, then any minimal variety of G-graded PI-algebras of finite basic rank, of G-exponent d, is

generated by a suitable G-graded algebra UTG(A1, . . . , Am) satisfying dimF (A1⊕· · ·⊕Am) = d,

where A1, . . . , Am are finite dimensional G-simple algebras.
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Chapter 2

Factorability and α-regularity

In this chapter, F will denote a field of characteristic zero and G will be a finite abelian

group. Here, we will start the study of one of the main topics of this work. More precisely,

we will define the factoring property of the ideals of graded polynomial identities satisfied by

the graded upper block triangular matrix algebras UTG(A1, . . . , Am), in case A1, . . . , Am are

graded subalgebras (not necessarily G-simple) of matrix algebras endowed with elementary

gradings, and we will present some results. Moreover, we will introduce the definition of α-

regularity, which is a generalization of the concept of G-regularity, and we will obtain some

relevant connections between these points with the invariance subgroups. It is worth saying

that the new results presented in this chapter have been recently published in [22], in a joint

work with Professor Viviane Ribeiro Tomaz da Silva and Professor Onofrio Mario Di Vincenzo.

Furthermore, some of these results present an alternative proof of that shown in [22].

2.1 G-regularity and factorability

We start this section recalling the concept of G-regularity, which was introduced by Di

Vincenzo and La Scala in [19]. To this end, let A be a finite dimensional G-graded algebra. We

define a G-graded generic algebra associated to A, which will be denoted by GenG(A), as being

a G-graded algebra isomorphic to F ⟨X;G⟩/IdG(A). This is the analogous construction of the

generic matrix algebra (see Section 7.2 of [25]).

Consider {υ1, . . . , υn} a linear homogeneous basis of A, that is, a basis of A formed by

homogeneous elements. We define

P (A) := F [x
(l)
i | i ∈ [1, n] and l ≥ 1]

as the polynomial ring in the countable set of commuting variables x
(l)
i and we refer to this
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ring as the polynomial ring associated to the finite dimensional G-graded algebra A. Moreover,

consider the tensor product A ⊗ P (A) with the natural grading induced from that of A, that

is,

A⊗ P (A) =
⊕
g∈G

(Ag ⊗ P (A)).

Since P (A) is commutative and F is an infinite field, it is valid that IdG(A⊗ P (A)) = IdG(A).

At this stage, we consider in A⊗P (A) the graded subalgebra Ā generated by the homogeneous

elements

al,g :=
∑
i∈[1,n]
|υi|A=g

x
(l)
i υi, for all l ≥ 1 and g ∈ G.

Remark that we omit the symbol for the tensor product in the above elements. It is well

known that Ā is a G-graded generic algebra associated to A, that is, Ā is isomorphic to

F ⟨X;G⟩/IdG(A).

Our next step is to define G-regular graded subalgebras of matrix algebras and then, in

Chapter 3, we will classify the finite dimensional G-simple algebras that are G-regular, in case

G is a finite cyclic group.

Let A be a graded subalgebra of (Mk, α). Given g ∈ G, define the following linear map:

πg : Mk ⊗ P (A) → Mk ⊗ P (A)∑
i,j

aijeij 7→
∑

i,j; α(i)=g

aijeij, (2.1)

where, for each i, j ∈ [1, k], eij denote the (i, j)-matrix unit of Mk. We remark that πg is the

zero map in case g /∈ Iα = α([1, k]). It is valid that

Ā = GenG(A) ⊆ A⊗ P (A) ⊆Mk ⊗ P (A),

and then we define the map

π̂g : Ā→Mk ⊗ P (A)

as being the restriction of πg to Ā.

Similarly, we define the map:

π∗
g : Mk ⊗ P (A) → Mk ⊗ P (A)∑

i,j

aijeij 7→
∑

i,j; α(j)=g

aijeij, (2.2)
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where i, j ∈ [1, k], and we consider

π̂∗
g : Ā→Mk ⊗ P (A)

its restriction to Ā.

Definition 2.1.1. Let A be a graded subalgebra ofMk endowed with an elementary grading α.

We say that A is a G-regular subalgebra of (Mk, α) if the maps π̂g are injective, for all g ∈ G.

Equivalently one could define G-regular subalgebras of (Mk, α) requiring that the maps π̂∗
g

are injective, for all g ∈ G (see Proposition 4.2 of [19]).

The next result establishes when matrix algebras are G-regular.

Theorem 2.1.2 (Theorem 5.4 of [19]). Let G be a finite abelian group. Let (Mk, α) be a G-

graded matrix algebra. Then (Mk, α) is G-regular if, and only if, the map α is surjective and

all its fibers are equipotent.

As consequence of some results of [19], we have also a characterization of the simple super-

algebras that are C2-regular. More precisely, the authors stated that Mk,l is C2-regular if, and

only if, k = l, whereas Mn(F ⊕ cF ) is C2-regular for all n ≥ 1.

In the sequel, we present two definitions related to the factoring property associated to the

TG-ideals of the G-graded upper block triangular matrix algebras.

Definition 2.1.3. Let A = UTG(A1, . . . , Am). We say that the TG-ideal IdG(A) is weakly

factorable if there exist 1 ≤ c1 < c2 < · · · < cu < m such that

IdG(A) = IdG(A
[1,c1])IdG(A

[c1+1,c2]) · · · IdG(A
[cu+1,m]).

In particular, if IdG(A) satisfies

IdG(A) = IdG(A1)IdG(A2) · · · IdG(Am),

then we say that IdG(A) is factorable.

There exist some studies involving the factoring property (see, for instance, [7, 12, 15, 19,

27]). Let us start discussing such problem for G-graded upper block triangular matrix algebras

having exactly two blocks.

Let R be the G-graded upper block triangular matrix algebra

R :=

(
A U

0 B

)
,
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where A ⊆ (Mm, α), B ⊆ (Mn, β) are graded subalgebras and U = Mm×n. Denote P := P (R)

as the polynomial ring associated to the finite dimensional algebra R. As in Section 4 of [19],

we consider a linear homogeneous basis of R given by the disjoint union of some homogeneous

basis of A,B and the canonical basis {Eij | i ∈ [1,m], j ∈ [m+ 1,m+ n]} of U . In this way,

the algebra R⊗ P contains

Ā = GenG(A), B̄ = GenG(B) and R̄ = GenG(R).

Let us define the following algebra:

R∗ :=

(
Ā Ū

0 B̄

)
,

where Ū is the graded (Ā-B̄)-bimodule contained in R ⊗ P generated by the homogeneous

elements

ul,g :=
∑

i∈[1,m],j∈[1,n]
|Ei,m+j |R = g

x
(l)
i,m+jEi,m+j, for all l ≥ 1 and g ∈ G.

Notice that R∗ is a graded subalgebra of R⊗P . Moreover, from Proposition 4.1 of [19], one

has that

IdG(R) = IdG(R̄) ⊆ IdG(R
∗).

Still, as a consequence of Lewin’s Theorem (see [30]), the authors proved in [19] the impor-

tant statement:

Lemma 2.1.4 (Corollary 3.2 of [19]). If the set {ul,g} is a countable free set of homogeneous

elements such that |ul,g|R∗ = |xl|F ⟨X;G⟩ for all l ≥ 1, then IdG(R
∗) = IdG(A)IdG(B).

The next result states that the G-regularity of only one of the G-graded algebras A or B is

a sufficient condition for the factorability of the TG-ideal IdG(R).

Theorem 2.1.5 (Theorem 4.5 of [19]). Let G be a finite abelian group. Let R be the G-graded

upper block triangular matrix algebra

R :=

(
A U

0 B

)
,

where A ⊆ (Mm, α), B ⊆ (Mn, β) are graded subalgebras and U =Mm×n. If one of A and B is

G-regular then the TG-ideal IdG(R) factorizes as

IdG(R) = IdG(A)IdG(B).
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In case G is a group of prime order, with A and B matrix algebras, Di Vincenzo and La

Scala also obtained the following:

Theorem 2.1.6 (Theorem 5.8 of [19]). Let R be the G-graded upper block triangular matrix

algebra

R :=

(
A U

0 B

)
,

where A = (Mm, α), B = (Mn, β) and U = Mm×n. If the finite group G has prime order, then

the TG-ideal IdG(R) factorizes as IdG(R) = IdG(A)IdG(B) if, and only if, one of the algebras

A or B is G-regular.

2.2 Establishing weaker conditions for the factorability

At the end of the previous section, we exhibited some results on the factoring property

which are related to the concept of G-regularity. In this section, we have as main goal to

present new results, concerning also the factoring property, which require weaker conditions

than the G-regularity, but regarding both G-graded algebras A and B. To this end, we will use

the same notations introduced in Section 2.1.

Theorem 2.2.1 (Theorem 3.2 of [22]). Let G be a finite abelian group. Let R be the G-graded

upper block triangular matrix algebra

R :=

(
A U

0 B

)
,

where A ⊆ (Mm, α), B ⊆ (Mn, β) are graded subalgebras and U =Mm×n. Suppose that, for all

g ∈ G, there exist i ∈ [1,m] and j ∈ [1, n] such that

(i) α(i)−1β(j) = g;

(ii) The map π̂∗
α(i) defined on GenG(A) is injective;

(iii) The map π̂β(j) defined on GenG(B) is injective.

Then the TG-ideal IdG(R) factorizes as

IdG(R) = IdG(A)IdG(B).
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Proof. In order to prove the result, it is enough to show that the elements ul,g form, for all

l ≥ 1 and g ∈ G, a countable free set in the graded (Ā-B̄)-bimodule Ū . If this is the case, by

invoking Lemmas 2.1.4 and 1.2.5, we obtain that

IdG(R) ⊆ IdG(R
∗) = IdG(Ā)IdG(B̄) = IdG(A)IdG(B) ⊆ IdG(R)

and, hence, IdG(R) = IdG(A)IdG(B).

First we remark that, by item (i), ul,g ̸= 0, for all l ≥ 1 and g ∈ G. Suppose that∑
l,g,p(algp)ul,g(blgp) = 0, with algp ∈ Ā and blgp ∈ B̄, for all l, g, p. Notice that, for all l and g,

the non-zero entries of ul,g are distinct variables, and thus we need to show that each ul,g =: u

is torsion-free. Therefore, assume that
∑

p(ap)u(bp) = 0, with (ap) ̸= 0 and (bp) being linearly

independent, for all p. It holds ∑
p

∑
r,s

(ap)qrurs(bp)sv = 0,

for any pair of indices (q, v). Since the non-zero entries urs of u are variables that are different

from those in (ap)qr and (bp)sv and, by definition of u, one has that the position urs is non-zero

if, and only if, α(r)−1β(s) = |u|R∗ , we can suppose that∑
p

(ap)qr(bp)sv = 0, (2.3)

for any quadruple (q, r, s, v) such that α(r)−1β(s) = |u|R∗ .

Let us fix a pair (i, j) such that i ∈ [1,m], j ∈ [1, n] and the conditions (i), (ii), (iii) are

satisfied for g = |u|R∗ . Then

α(i)−1β(j) = |u|R∗ .

On the other hand, once (a1) ̸= 0, item (ii) guarantees π̂∗
α(i)(a1) ̸= 0 and this implies that there

exist indices q̄, r̄ ∈ [1,m] such that

α(r̄) = α(i) and (a1)q̄r̄ ̸= 0.

In particular, from (2.3), we obtain ∑
p

(ap)q̄r̄(bp)sv = 0,
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for all indices v ∈ [1, n] and all s ∈ [1, n] such that β(s) = β(j). Consequently, it follows that∑
s,v

β(s)=β(j)

∑
p

(ap)q̄r̄(bp)svEsv = 0,

and thus ∑
p

(ap)q̄r̄π̂β(j)(bp) = 0.

Finally, since (bp) are linearly independents, we conclude, by item (iii), that π̂β(j)(bp) are

also linearly independents. But, the fact that (a1)q̄r̄ ̸= 0 give us a contradiction, as desired.

As a consequence of the above theorem we obtain the following:

Corollary 2.2.2 (Corollary 3.3 of [22]). Let G be a finite abelian group. Let R be the G-graded

upper block triangular matrix algebra

R :=

(
A U

0 B

)
,

where A ⊆ (Mm, α), B ⊆ (Mn, β) are graded subalgebras and U =Mm×n. Suppose that

(i) G = {α(i)−1β(j) | i ∈ [1,m] and j ∈ [1, n]};

(ii) The maps π̂∗
α(i) defined on GenG(A) are injective, for all i ∈ [1,m];

(iii) The maps π̂β(j) defined on GenG(B) are injective, for all j ∈ [1, n].

Then the TG-ideal IdG(R) factorizes as

IdG(R) = IdG(A)IdG(B).

We notice that the conditions (i), (ii) and (iii) of the above corollary are weaker than the

G-regularity condition. Actually, we select the rows (or the columns) whose indices correspond

only to the values assumed by the maps that define the elementary gradings. Moreover, we

require that the maps π̂• (or π̂
∗
•) corresponding to these selections are injective. This motivates

us to introduce a new definition which will be presented in the next section.

2.3 α-regularity and invariance subgroups

The concept of α-regularity appears as a natural extension of the definition of G-regular

subalgebras. We start by establishing such definition for graded subalgebras of (Mk, α). We
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recall that Iα = α([1, k]), that is, Iα is the image of the map α : [1, k] → G. Moreover, we

remark that the map π̂g is not injective if, and only if, there exists a polynomial f /∈ IdG(A)

such that πg(ρ(f)) = 0, for every G-graded evaluation ρ : F ⟨X;G⟩ → A. We can assume

that the polynomial f is homogeneous in the free algebra F ⟨X;G⟩ and let |f |F ⟨X;G⟩ = h be its

degree. Then π̂∗
hg(ρ(f)) = 0 for every G-graded evaluation ρ and, hence, π̂∗

hg is a not injective

either. Clearly g and hg are both elements of the set Iα or both do not belong to Iα. In this

way, we present the following definition:

Definition 2.3.1. Let A be a graded subalgebra of (Mk, α) endowed with an elementary

grading. We say that A is α-regular if the maps π̂g are injective, for all g ∈ Iα, or equivalently

if the maps π̂∗
g are injective, for all g ∈ Iα.

In the sequel, given A := (Mk, α), we will prove some results which establish connections

between the maps π̂• and π̂∗
•, defined on GenG(A), and the image of the map α. We will also

see important relations between these concepts and the so-called invariance subgroups. Such

subgroups were introduced by Di Vincenzo and Spinelli in [24].

By considering (Mk, α) and the weight map wα : G→ N introduced in Section 1.1, we set

Hα := {h ∈ G | wα(hg) = wα(g), for all g ∈ G}.

The subgroup Hα is the invariance subgroup related to the algebra (Mk, α).

Proposition 2.3.2. Let G be a finite abelian group and consider A = (Mk, α). The following

statements are equivalent:

(i) The maps π̂h defined on GenG(A) are injective, for all h ∈ Iα;

(ii) The maps π̂∗
h defined on GenG(A) are injective, for all h ∈ Iα;

(iii) There exist a subgroup H of G and an element g ∈ G such that

Iα = gH

and all fibers of the map α are equipotent.

Proof. First, let us prove that (i) implies (iii). Suppose that the maps π̂h defined on GenG(A)

are injective, for all h ∈ Iα. Then there exist a subset S = {g1, . . . , gs} of G and an element

g ∈ G such that

Iα = gS and 1G ∈ S.
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Thus, in order to conclude that S is a subgroup of G, it is enough to show that g−1
i gj ∈ S, for

all gi, gj ∈ S.

Fix arbitrary elements gi, gj ∈ S. Clearly, there exist indices u, v ∈ [1, k] such that

|Euv|A = g−1
i gj.

Consequently, there exists a non-zero homogeneous element a′ ∈ GenG(A) such that

a′ =
∑
l,t

|Elt|A=g−1
i

gj

fltElt, with flt ∈ P (A).

Since g ∈ Iα, then π̂g is injective, which yields

π̂g(a
′) =

∑
α(l)=g; t

|Elt|A=g−1
i

gj

fltElt ̸= 0

and this implies that there exist l, t ∈ [1, k], such that α(l) = g, satisfying

g−1
i gj = |Elt|A = α(l)−1α(t).

Once α(t) = ggt′ , for some t′ ∈ [1, s], we conclude that g−1
i gj = gt′ ∈ S, and then S is a

subgroup of G.

Now, let us assume that the fibers of the map α are not equipotent. Then, by denoting, for

each i ∈ [1, s], qi := wα(ggi), let us suppose, without loss of generality, that q1 > qℓ, for some

ℓ ∈ [2, s]. Consider the graded standard polynomial

S2qℓ := S2qℓ(y1, . . . , y2qℓ) =
∑

σ∈Sym(2qℓ)

(−1)σyσ(1) · · · yσ(2qℓ),

where y1, . . . , y2qℓ are homogeneous variables of degree 1G. It follows that if ρ : F ⟨X;G⟩ → A

is an arbitrary graded evaluation, then ρ(S2qℓ) is a homogeneous element in A of degree 1G.

We remark that the following direct sum (as algebras) holds:

A1G = A
(gg1)
1G

⊕ · · · ⊕ A
(ggs)
1G

,

where, for each i ∈ [1, s],

A
(ggi)
1G

:= spanF{Euv | α(u) = α(v) = ggi}.
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Then, we can apply Amitsur-Levitzki theorem and conclude that ρ(S2qℓ) has zero component

in A
(ggℓ)
1G

as direct summand of A1G , for any graded evaluation ρ : F ⟨X;G⟩ → A.

On the other hand, since q1 > qℓ, again by Amitsur-Levitzki theorem, there exists a graded

evaluation ρ′ : F ⟨X;G⟩ → A such that ρ′(S2qℓ) is also a homogeneous element in A of degree

1G which has non-zero component in A
(gg1)
1G

. Therefore, the graded standard polynomial S2qℓ

defines a non-zero element a′ in GenG(A) such that π̂ggℓ(a
′) = 0, which implies π̂ggℓ is not

injective.

In order to prove that (iii) implies (i), assume that there exist a subgroup H = {h1, . . . , hs}
of G and an element g ∈ G such that Iα = gH and all fibers of the map α are equipotent.

Then, by denoting, for each i ∈ [1, s], qi := wα(ghi), it follows that

q1 = · · · = qs.

Fix ℓ ∈ [1, s] and an element a′ in GenG(A) satisfying π̂ghℓ
(a′) = 0. We claim that a′ = 0.

In fact, let φ : F ⟨X;G⟩ → GenG(A) be the canonical G-graded epimorphism such that

ker(φ) = IdG(A). Take f ∈ F ⟨X;G⟩ such that φ(f) = a′ and fix ρ : F ⟨X;G⟩ → A an arbitrary

graded evaluation. Thus, we obtain that

ρ(f) =
∑
i,j

dijEij, with dpj = 0, for all p ∈ [1, k] satisfying α(p) = ghℓ.

Fix an arbitrary ℓ′ ∈ [1, s] and consider

ḡ := h−1
ℓ′ hℓ. (2.4)

Since H is a subgroup of G it follows that ḡ ∈ H. Thus, there exists θ ∈ Sym(s) such that

hlḡ = hθ(l), for all l ∈ [1, s],

and, in particular,

θ(ℓ′) = ℓ.

Moreover, the equalities q1 = q2 = · · · = qs guarantee the existence of σ in Sym(k) satisfying

α(σ(ι)) = ḡα(ι), for all ι ∈ [1, k]. (2.5)

Finally, define the map

Γ : A → A

Euv 7→ Eσ(u)σ(v).

30



It is clear that Γ is a graded isomorphism. Furthermore, we remark that Γρ : F ⟨X;G⟩ → A is

still a graded evaluation and

Γ(ρ(f)) =
∑
i,j

dijEσ(i)σ(j).

Since π̂ghℓ
(a′) = 0, by combining (2.4) and (2.5), we obtain that

dpj = 0, for all p ∈ [1, k] satisfying α(p) = ghℓ′ .

Therefore, once ghℓ′ is arbitrary, we conclude that dij = 0, for every i, j ∈ [1, k]. Then,

f ∈ IdG(A) and this implies a′ = 0, as desired.

The proof that the statements (ii) and (iii) are equivalent is analogous.

We remark that, as a consequence of Proposition 2.3.2, if (Mk, α) is α-regular and we

multiply the elements α(1), . . . , α(k) by a suitable element of G, then we obtain an H-grading

on (Mk, α) such that (Mk, α) is H-regular according with Definition 2.1.1. In particular, in case

H = G, the notion of α-regularity coincides with G-regularity. The next step is to establish a

connection between α-regularity and the invariance subgroup Hα. First we state the following

lemma which depends only on the map α : [1, k] → G.

Lemma 2.3.3 (Lemma 3.6 of [22]). Let G be a finite abelian group and consider a map α :

[1, k] → G. Then the following statements are equivalent:

(i) There exist a subgroup H of G and an element g ∈ G such that Iα = gH and all fibers of

the map α are equipotent;

(ii) There exists an element g ∈ G such that

Iα = gHα.

Proof. First, suppose that there exist a subgroup H = {h1, . . . , hs} of G and an element g ∈ G

such that Iα = gH and all fibers of the map α are equipotent, that is,

wα(ghi) = wα(ghj), for all i, j ∈ [1, s].

Take an arbitrary element hl ∈ H. Let us prove that hl satisfies

wα(hlḡ) = wα(ḡ), for all ḡ ∈ G,

and consequently hl ∈ Hα. If ḡ ∈ Iα, then ḡ = ghi, for some i ∈ [1, s], and since H is a
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subgroup of G it follows that hlhi ∈ H. Thus, since G is abelian,

wα(hlḡ) = wα(hlghi) = wα(ghlhi) = wα(ghi) = wα(ḡ).

On the other hand, if ḡ /∈ Iα, then wα(ḡ) = 0. In this case, it is easy to verify that wα(hlḡ) = 0.

Now, take h̃ ∈ Hα. Then, one has that

wα(gh̃) = wα(h̃g1G) = wα(g1G) ̸= 0 (2.6)

and this allows us to conclude that h̃ ∈ H. Therefore, we obtain that H = Hα.

Reciprocally, assume that Iα = gHα. It is valid that Hα is a subgroup of G. Moreover, for

any h̃ ∈ Hα, (2.6) holds. Therefore all fibers of the map α are equipotent.

As a consequence of Proposition 2.3.2 and Lemma 2.3.3, we obtain the following nice char-

acterization of the graded matrix algebras (Mk, α) which are α-regular.

Theorem 2.3.4 (Theorem 3.7 of [22]). Let G be a finite abelian group. Then (Mk, α) is α-

regular if, and only if, there exists an element g ∈ G such

Iα = gHα.
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Chapter 3

Cn-simple algebras

In Chapter 1, we presented, when G is a group of order 2 and even in case G is a group of any

prime order, the description of the finite dimensional G-simple algebras as graded subalgebras

of matrix algebras endowed with elementary gradings obtained in [35] and [17], respectively. In

this sense, if G = Cn is any finite cyclic group of order n, the first aim of this chapter consists

in describing the finite dimensional G-simple algebras as graded subalgebras of matrix algebras

endowed with some elementary gradings. In the sequel, we will present some necessary and

sufficient conditions in order to obtain a graded isomorphism between such G-simple algebras

and we will study its regularity. The new results establish here count with the collaboration of

Professor Viviane Ribeiro Tomaz da Silva and Professor Onofrio Mario Di Vincenzo, and can

be found in [22]. It is worth highlighting that the proofs of some of these results are different

from those presented in [22].

3.1 The characterization of the Cn-simple algebras

Let G be an arbitrary group. Consider R = F [G] the group algebra over F and let B =

{rg | g ∈ G} be a basis for R, with the product of its elements being rgrh = rgh, for all

g, h ∈ G. We endow R with the canonical G-grading R = ⊕g∈GRg, where, for each g ∈ G,

Rg = spanF{rg}. Notice that all homogeneous non-zero elements of R are invertible and, hence,

R is a graded skew field. Assume now that the product of the basis elements of R is defined as

rgrh = σ(g, h)rgh,

where σ(g, h) ∈ F ∗, for all g, h ∈ G. For such product to be associative the map σ : G×G→ F ∗

has to satisfy

σ(g, h)σ(gh, l) = σ(h, l)σ(g, hl), for all g, h, l ∈ G.
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In this case, the map σ is said a 2-cocycle on G with values in F ∗ and the associative algebra

F σ[G] := spanF{rg | g ∈ G}

is called the twisted group algebra defined by σ. We remark that if σ = 1, thus F σ[G] is the

ordinary group algebra R.

Such algebras are related with the description of the finite dimensional G-simple F -algebras,

presented by Bahturin, Sehgal and Zaicev, in [10]. In that paper, the authors proved the

following result:

Theorem 3.1.1 (Theorems 2 and 3 of [10]). Let G be an arbitrary group and F an algebraically

closed field such that either charF = 0 or charF = p > 0 is coprime with the order of each finite

subgroup of G. Consider A a finite dimensional F -algebra. Then A is a G-simple algebra if,

and only if, A is graded-isomorphic to Mk ⊗D ∼= Mk(D), where D = ⊕h∈HDh is a graded skew

field with Supp(D) = H being a subgroup of G, and Mk has an elementary G-grading defined

by a k-tuple (g1, . . . , gk) ∈ Gk such that

|eij ⊗ dh|Mk(D) = g−1
i hgj,

for each matrix unit eij ∈ Mk and each homogeneous element dh ∈ Dh. Moreover, D is

isomorphic to a twisted group algebra F σ[H] with canonical H-grading, where σ : H ×H → F ∗

is a 2-cocycle on H.

From now on, unless otherwise is stated, F is an algebraically closed field of characteristic

zero and ϵ is a primitive nth root of the unity in F ∗. Moreover, we consider G := Cn = ⟨ϵ⟩, the
finite cyclic group generated by ϵ.

The aim of this section is presenting, by applying results of [10], a characterization of the

finite dimensional G-simple F -algebras as graded subalgebras of matrix algebras endowed with

some elementary gradings.

First, given a finite dimensional G-simple F -algebra A, from Theorem 3.1.1, one has that

A is graded-isomorphic to Mk ⊗D ∼= Mk(D), where D = ⊕h∈HDh is a graded skew field with

Supp(D) = H being a subgroup of G. Then |H| = r and H = ⟨ϵs⟩ = {1G, ϵs, (ϵs)2, . . . , (ϵs)r−1},
for some positive integers r, s such that |G| = n = r · s.

According to Lemma 3 of [10], dimFDh = 1, for all h ∈ H. Therefore, we have that

Dϵs = Fa, for some a ∈ Dϵs .
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It is easy to verify that D(ϵs)t = Fat, for all t ≥ 1. Then, we obtain

Far = D(ϵs)r = D1G = F1D

and this implies that there exists γ ∈ F ∗ such that ar = γ. Since F is algebraically closed,

also there exists γ′ ∈ F ∗ such that (γ′)r = γ. By setting b := (γ′)−1a we get br = 1D and we

conclude that

D = D1G ⊕Dϵs ⊕D(ϵs)2 ⊕ · · · ⊕D(ϵs)r−1 = F ⊕ Fb⊕ Fb2 ⊕ · · · ⊕ Fbr−1,

with bt being homogeneous of degree (ϵs)t, for all t ∈ [0, r − 1].

Consider the matrix algebra Mr with elementary grading induced by the r-tuple

ϵ̃r := (1G, ϵ
s, (ϵs)2, . . . , (ϵs)r−1) ∈ Gr

and, for each i, j ∈ [1, r], denote by Eij the (i, j)-matrix unit of Mr (it is worth remarking that

we are using Eij for the matrix units of Mr in order to distinguish them of the matrix units euv

of Mk, introduced in Section 1.1).

Consider the permutation

ς := (1 2 · · · r)

and set

E :=
r−1∑
l=0

Eςl(1),ςl(2) = E12 + E23 + E34 + · · ·+ Er−1,r + Er1.

It holds that Et =
∑r−1

l=0 Eςl(1),ςl(t+1), for all t ∈ [0, r − 1] and Er = E0. Furthermore, the set

{Et | t ∈ [0, r − 1]}

is linearly independent and |Et|Mr = (ϵs)t, for all t ∈ [0, r − 1].

Let us denote by Dr the graded subalgebra of (Mr, ϵ̃r) generated by the elements {Et | t ∈
[0, r − 1]}, that is, Dr is defined as

Dr :=





d0 d1 · · · dr−2 dr−1

dr−1 d0
. . . dr−2

...
. . . . . . . . .

...

d2
. . . . . . d1

d1 d2 · · · dr−1 d0


| d0, d1, . . . , dr−1 ∈ F


,
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with its natural grading induced by the r-tuple ϵ̃r = (1G, ϵ
s, (ϵs)2, . . . , (ϵs)r−1). Clearly Dr is a

finite dimensional graded skew algebra and Supp(Dr, ϵ̃r) = ⟨ϵs⟩.
In the next lemma we stated that D is graded-isomorphic to Dr and, consequently, we will

obtain that D can be seen as a graded subalgebra of the matrix algebra (Mr, ϵ̃r).

Lemma 3.1.2 (Lemma 4.1 of [22]). Let G = ⟨ϵ⟩ be a cyclic group such that |G| = n = r · s,
for some positive integers r and s. Moreover, let D = ⊕h∈HDh be a graded skew field, with

Supp(D) = H = ⟨ϵs⟩, and consider the matrix algebra (Mr, ϵ̃r). Then D is graded-isomorphic

to Dr ⊆ (Mr, ϵ̃r).

Proof. From the above discussions one has that there exists b ∈ D such that

D = F ⊕ Fb⊕ Fb2 ⊕ · · · ⊕ Fbr−1

and, for each t ∈ [0, r − 1], bt is homogeneous of degree (ϵs)t. Define the map

Γ : F ⊕ Fb⊕ Fb2 ⊕ · · · ⊕ Fbr−1 → Dr

d0 + d1b+ d2b
2 + · · ·+ dr−1b

r−1 7→


d0 d1 · · · dr−1

dr−1 d0 · · · dr−2

...
...

. . .
...

d1 d2 · · · d0

 .

Clearly Γ is an isomorphism of algebras. Since, for each t ∈ [0, r−1], bt and Et are homogeneous

of degree (ϵs)t, and Γ(bt) = Et, we obtain that Γ is a graded isomorphism and this concludes

the proof of the lemma.

Now, given the matrix algebra Mk, with the elementary grading defined by a k-tuple g̃ =

(g1, . . . , gk) ∈ Gk, consider the tensor product Mk ⊗Dr. The set

B := {eij ⊗ Et | i, j ∈ [1, k], t ∈ [0, r − 1]}

is a basis of Mk ⊗ Dr, which will be called the canonical basis of Mk ⊗ Dr, where, for each

i, j ∈ [1, k], eij denote the (i, j)-matrix unit of the matrix algebra Mk. At light of Theorem

3.1.1, we endow Mk ⊗Dr with the grading such that

|eij ⊗ Et|Mk⊗Dr = g−1
i gj(ϵ

s)t, for all i, j ∈ [1, k], t ∈ [0, r − 1].

In particular, B is a homogeneous basis of Mk ⊗Dr.

On the other hand, consider the finite dimensional algebraMk(Dr) ⊆Mkr with the elemen-

36



tary grading induced by the (kr)-tuple

g̃ ⊙ ϵ̃r := (g1, ϵ
sg1, . . . , (ϵ

s)r−1g1, . . . , gk, ϵ
sgk, . . . , (ϵ

s)r−1gk),

where r, s are such that |G| = n = r · s.
Clearly, since G is an abelian group, Mk ⊗Dr is graded-isomorphic to (Mk(Dr), g̃⊙ ϵ̃r) and

we can identify any element ∑
i,j∈[1,k]
t∈[0,r−1]

d
(ij)
t (eij ⊗ Et) ∈Mk ⊗Dr

with 

d
(11)
0 d

(11)
1 · · · d

(11)
r−2 d

(11)
r−1

d
(11)
r−1 d

(11)
0

. . . d
(11)
r−2

...
. . .

. . .
. . .

...

d
(11)
2

. . .
. . . d

(11)
1

d
(11)
1 d

(11)
2 · · · d

(11)
r−1 d

(11)
0

· · ·

d
(1k)
0 d

(1k)
1 · · · d

(1k)
r−2 d

(1k)
r−1

d
(1k)
r−1 d

(1k)
0

. . . d
(1k)
r−2

...
. . .

. . .
. . .

...

d
(1k)
2

. . .
. . . d

(1k)
1

d
(1k)
1 d

(1k)
2 · · · d

(1k)
r−1 d

(1k)
0

...
. . .

...

d
(k1)
0 d

(k1)
1 · · · d

(k1)
r−2 d

(k1)
r−1

d
(k1)
r−1 d

(k1)
0

. . . d
(k1)
r−2

...
. . .

. . .
. . .

...

d
(k1)
2

. . .
. . . d

(k1)
1

d
(k1)
1 d

(k1)
2 · · · d

(k1)
r−1 d

(k1)
0

· · ·

d
(kk)
0 d

(kk)
1 · · · d

(kk)
r−2 d

(kk)
r−1

d
(kk)
r−1 d

(kk)
0

. . . d
(kk)
r−2

...
. . .

. . .
. . .

...

d
(kk)
2

. . .
. . . d

(kk)
1

d
(kk)
1 d

(kk)
2 · · · d

(kk)
r−1 d

(kk)
0



∈Mk(Dr),

where d
(ij)
t ∈ F , for all i, j ∈ [1, k] and t ∈ [0, r−1]. We notice that (Mk(Dr), g̃⊙ ϵ̃r) is a graded

subalgebra of (Mkr, g̃ ⊙ ϵ̃r).

Let us divide Mkr into r × r blocks, labeled with pairs (u, v) such that u, v ∈ [1, k], that is,

Mkr = {(buv)u,v∈[1,k] | buv ∈Mr, for all u, v ∈ [1, k]}

and, for each i, j ∈ [1, k], let us define the block

Bij := {(buv)u,v∈[1,k] | buv = 0, for all (u, v) ̸= (i, j)}.

For each i, j ∈ [1, k], d, p ∈ [1, r], we denote the matrix unit of Mkr, corresponding to the

position (d, p) of the block Bij, by

E
(i,j)r
dp := E(i−1)r+d,(j−1)r+p,
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where Elq is the (l, q)-matrix unit of Mkr and the index r emphasizes that each block is a r× r

matrix.

We remark that, by taking the permutation

τ := (0 1 · · · r − 1),

if i, j ∈ [1, k] and t ∈ [0, r− 1] then, in the block Bij of Mk(Dr) ⊆Mkr, the elements appearing

at positions (l + 1, τ l(t) + 1), with l ∈ [0, r − 1], are the same.

Therefore, with the previously seen identification, we can write each element eij ⊗ Et of B
as a sum of r distinct matrices in Mkr:

eij ⊗ Et =
r−1∑
l=0

E
(i,j)r
l+1,τ l(t)+1

=
r−1∑
l=0

E(i−1)r+l+1,(j−1)r+τ l(t)+1. (3.1)

We observe that the left (and right) indices of the matrix units Eipjp appearing in the above

sum are pairwise distinct. Furthermore, for all ip, jp ∈ [1, kr], there exists an unique canonical

basis element eij ⊗ Et of B such that Eipjp appears in the sum of eij ⊗ Et. Then, when it is

convenient, we will denote

eij ⊗ Et = E(i−1)r+1,(j−1)r+t+1 = · · · = E(i−1)r+r,(j−1)r+τr−1(t)+1. (3.2)

Moreover if r = 1 then Mk(Dr) is Mk and eij ⊗ E0 = Eij.

We are in position to state the main result of this section, which classifies all finite dimen-

sional G-simple algebras as graded subalgebras of matrix algebras, in case G is a finite cyclic

group.

Theorem 3.1.3 (Theorem 4.2 of [22]). Let F be an algebraically closed field of characteristic

zero and G = ⟨ϵ⟩ a cyclic group, with ϵ being a primitive nth root of the unity in F ∗. Then any

finite dimensional G-simple algebra is graded-isomorphic to a graded subalgebra

(Mk(Dr), g̃ ⊙ ϵ̃r) ⊆ (Mkr, g̃ ⊙ ϵ̃r),

whose grading is induced by the (kr)-tuple

g̃ ⊙ ϵ̃r := (g1, ϵ
sg1, . . . , (ϵ

s)r−1g1, . . . , gk, ϵ
sgk, . . . , (ϵ

s)r−1gk),

where the tuples g̃ = (g1, . . . , gk) ∈ Gk and ϵ̃r = (1G, ϵ
s, (ϵs)2, (ϵs)3, . . . , (ϵs)r−1) induce the

elementary gradings in Mk and Mr, respectively, and r, s are such that n = r · s.

Proof. Let A be a finite dimensional G-simple algebra. From Theorem 3.1.1, it follows that

38



there exists a graded skew field D = ⊕h∈HDh, with Supp(D) = H being a subgroup of G and

r = |H|, such that A is isomorphic to Mk ⊗D, and Mk has an elementary grading induced by

a k-tuple g̃ = (g1, . . . , gk) ∈ Gk.

Now, by invoking Lemma 3.1.2, we can suppose that D = Dr is a graded subalgebra of

(Mr, ϵ̃r). Therefore, by our previous discussions, we can concluded that A is graded-isomorphic

to the graded subalgebra (Mk(Dr), g̃ ⊙ ϵ̃r) of (Mkr, g̃ ⊙ ϵ̃r).

Given a positive integer l ≥ 1, we define the Capelli polynomial of rank l (or the lth Capelli

polynomial) as

Capl(x1, . . . , xl; xl+1, . . . , x2l+1) :=
∑

σ∈Sym(l)

(−1)σxl+1xσ(1)xl+2 · · ·x2lxσ(l)x2l+1.

We finish this section by presenting an important property of such polynomial associated to

finite dimensional G-simple algebras.

Lemma 3.1.4. Let G = ⟨ϵ⟩ be a cyclic group and consider A = (Mk(Dr), g̃ ⊙ ϵ̃r). The Capelli

polynomial Capl(x1, . . . , xl; xl+1, . . . , x2l+1) is an ordinary polynomial identity for A if, and only

if, l > k2.

Proof. For each positive integer l ≥ 1, let us write fl as being the Capelli polynomial of rank

l and we denote the evaluation of each variable xi, at elements of the canonical basis of A, by

x̄i.

First, suppose that l = k2. In this case, assume that x̄1, . . . , x̄k2 is equal to e11⊗E0, . . . , e1k⊗
E0, . . . , ek1 ⊗ E0, . . . , ekk ⊗ E0, respectively, x̄k2+1 = e11 ⊗ E0, x̄2k2+1 = ek1 ⊗ E0, and for all

remaining x̄i’s we consider the evaluation such that the monomial of fk2 associated to σ = 1 is

the unique monomial whose evaluation is non-zero. Thus

Capk2(x̄1, . . . , x̄k2 ; x̄k2+1, . . . , x̄2k2+1) = e11 ⊗ E0

and this yields us that fk2 /∈ Id(A). Similarly, we obtain that fl /∈ Id(A) in case l < k2.

On the other hand, assume l > k2. Since the algebra Dr is commutative, for each i ∈
[1, 2l + 1], by considering an evaluation by canonical basis elements x̄i = epiqi ⊗ Eti , it follows

that

f̄l = Capl(x̄1, . . . , x̄l; x̄l+1, . . . , x̄2l+1) = Capl(ep1q1 , . . . , eplql ; epl+1ql+1
, . . . , ep2l+1q2l+1

)⊗ Et,

for some t ∈ [0, r − 1]. The fact that the Capelli polynomial is alternating in the variables

x1, . . . , xl and multilinear guarantees us that Capl(ep1q1 , . . . , eplql ; epl+1ql+1
, . . . , ep2l+1q2l+1

) = 0

and, hence, f̄l ∈ Id(A), as desired.
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3.2 Cn-simple algebras and the isomorphism problem

In this section, we will establish conditions in order to obtain a graded isomorphism between

finite dimensional Cn-simple F -algebras. Moreover, we will explore the isomorphism problem

regarding such algebras.

Let A = (Mk(Dr), g̃ ⊙ ϵ̃r). If α : [1, k] → G is the map corresponding to the elementary

grading g̃ = (g1, . . . , gk) defined onMk, we denote by α⊙ ϵ̃r : [1, kr] → G the map corresponding

to the grading g̃ ⊙ ϵ̃r defined on A, that is,

((α⊙ ϵ̃r)(1), . . . , (α⊙ ϵ̃r)(kr)) = (g1, ϵ
sg1, . . . , (ϵ

s)r−1g1, . . . , gk, ϵ
sgk, . . . , (ϵ

s)r−1gk).

In this case, we write

A = (Mk(Dr), g̃ ⊙ ϵ̃r) = (Mk(Dr), α⊙ ϵ̃r).

Analogously to matrix algebras, we set

Iα⊙ϵ̃r := (α⊙ ϵ̃r)([1, kr]),

and we also define the weight map wα⊙ϵ̃r : G→ N as

wα⊙ϵ̃r(g) := |{i | 1 ≤ i ≤ kr, (α⊙ ϵ̃r)(i) = g}|.

Notice that Iα⊙ϵ̃r = {g ∈ G | wα⊙ϵ̃r(g) ̸= 0}. Moreover, we set

Hα⊙ϵ̃r := {h ∈ G | wα⊙ϵ̃r(hg) = wα⊙ϵ̃r(g), for all g ∈ G}.

The subgroup Hα⊙ϵ̃r is said the invariance subgroup related to the G-simple algebra A. We

remark that

Hr := ⟨ϵs⟩ ⊆ Hα⊙ϵ̃r .

In [3] Aljadeff and Haile established suitable properties which determine G-simple algebras

up to graded isomorphism (for any group G). In the sequel, we present such properties in case

G is finite cyclic.

Let G = ⟨ϵ⟩ be a cyclic group and consider the finite dimensional G-simple algebras

A = (Mk(Dr), α⊙ ϵ̃r) and B = (Mh(Dt), β ⊙ ϵ̃t).

First we remark that the presentation PA, introduced by Aljadeff and Haile in Definition 1.2

of [3], of A = (Mk(Dr), α⊙ ϵ̃r) is determined by r and (α(1), . . . , α(k)) = (g1, . . . , gk), because
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Hr = ⟨ϵs⟩ is the unique subgroup of G of order r and by Lemma 3.1.2 there exists, up to graded

isomorphism, a unique graded skew field Dr having Hr as a support. Hence we can write

PA = (r;α) = (r; (g1, . . . , gk)).

In the same way, we can write the presentation PB of B = (Mh(Dt), β⊙ ϵ̃t) as PB = (t; β) =

(t; (g′1, . . . , g
′
h)). Moreover, in our case, the basic moves of type (1), (2) or (3), introduced in

Lemma 1.3 of [3], correspond to the actions described in the following items:

(i) Permuting the elements in the k-tuple (g1, . . . , gk), that is, consider the presentation

(r;α · ν) := (r; (gν(1), . . . , gν(k))),

where ν is an arbitrary element of the symmetric group Sym(k);

(ii) Given i ∈ [1, k], replacing the entry gi by any element hgi of Hrgi, that is, consider the

presentation (r; (g1, . . . , gi−1, hgi, gi+1, . . . , gk));

(iii) Given g ∈ G, multiplying the elements in the k-tuple (g1, . . . , gk) by g, that is, consider

the presentation
(r; lg · α) := (r; (gg1, . . . , ggk)),

where lg is the left multiplication by g on G.

As in [3], we say that the presentations PA of the G-simple algebra A and PB of the G-simple

algebra B are equivalent if one is obtained from the other by a finite sequence of basic moves

(items (i),(ii) or (iii) above). It follows from Lemma 1.3 and Proposition 3.1 of [3] that the

algebras A and B are graded-isomorphic if, and only if, they have equivalent presentations.

Now let us consider the map α : [1, k] → G/Hr defined by

α(i) := Hrα(i).

Let β be the map induced by β in the corresponding way. We remark that any basic move of

type (ii) on the presentation PA has no effect on the map α. Therefore the presentations PA

and PB are equivalent if, and only if, k = h, r = t and there exist g ∈ G, ν ∈ Sym(k) such that

β = lHrg · α · ν. This last condition is satisfied if, and only if, one has wβ = wlHrg ·α, that is:

wβ(Hrgx) = wα(Hrx), for all x ∈ G.
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Since wα(Hrx) = wα⊙ϵ̃r(x) and wβ(Hrx) = wβ⊙ϵ̃r(x), for all x ∈ G, we conclude that

wβ⊙ϵ̃r(gx) = wα⊙ϵ̃r(x), for all x ∈ G.

Finally, the above equality guarantees us that

Iβ⊙ϵ̃r = gIα⊙ϵ̃r and Hβ⊙ϵ̃r = Hα⊙ϵ̃r .

We summarize all this information in the following statement:

Proposition 3.2.1 (Proposition 4.3 of [22]). Let G = ⟨ϵ⟩ be a cyclic group and consider the

finite dimensional G-simple algebras

A = (Mk(Dr), α⊙ ϵ̃r) and B = (Mh(Dt), β ⊙ ϵ̃t).

Then B is graded-isomorphic to A if, and only if, k = h, r = t and there exists g ∈ G such

that

wβ⊙ϵ̃r(gx) = wα⊙ϵ̃r(x), for all x ∈ G.

In this case, one has that

Iβ⊙ϵ̃r = gIα⊙ϵ̃r and Hβ⊙ϵ̃r = Hα⊙ϵ̃r .

Furthermore, as consequence of the previous results, we obtain the following:

Corollary 3.2.2 (Corollary 3.3 of [31]). Let G = ⟨ϵ⟩ be a cyclic group. Consider two finite

dimensional G-simple algebras

A = (Mk(Dr), α⊙ ϵ̃r) and B = (Mh(Dt), β ⊙ ϵ̃t)

such that dimFB = dimFA.

The following statements are equivalent:

(i) IdG(B) ⊆ IdG(A);

(ii) B is graded-isomorphic to A;

(iii) there exists g ∈ G such that wβ⊙ϵ̃t(gx) = wα⊙ϵ̃r(x), for all x ∈ G.

Proof. First, if item (i) is valid, since dimFB = dimFA we obtain, from Theorem 1.2.4,

that B is graded-isomorphic to A. On the other hand, if item (ii) holds, thus it is clear that

IdG(B) = IdG(A), and hence we conclude the equivalence between (i) and (ii).
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Now, by invoking Proposition 3.2.1, it follows that item (ii) implies (iii). Finally, if item

(iii) is true, then ht = kr. Once h2t = dimFB = dimFA = k2r, one has that h = k and t = r.

Thus, it is enough to apply Proposition 3.2.1 in order to conclude the proof.

Let A = (Mk(Dr), α⊙ ϵ̃r) with presentation PA = (r; (g1, . . . , gk)). We consider TA ⊆ [1, k]

such that Iα = α(TA), with α(i) ̸= α(j) for all i, j ∈ TA, i ̸= j.

Moreover, we consider TA ⊆ [1, kr] such that Iα⊙ϵ̃r = (α ⊙ ϵ̃r)(TA), with (α ⊙ ϵ̃r)(i) ̸=
(α⊙ ϵ̃r)(j) for all i, j ∈ TA, i ̸= j. Note that we could take, for instance, TA = {(i−1)r+j | i ∈
TA, j ∈ [1, r]}. Let us write Iα⊙ϵ̃r = {hi | i ∈ TA}.

Given g ∈ G, by setting

A
(g)
1G

:= spanF{epq ⊗ El | Hrgp = Hrgq = Hrg and g−1
p (ϵs)lgq = 1G},

the following direct sum (as algebras) holds:

A1G =
⊕
i∈TA

A
(gi)
1G
.

We finish this section by presenting a technical lemma and an important remark, which will

be useful in the next chapters.

Lemma 3.2.3 (Lemma 5.1 of [22]). Let G = ⟨ϵ⟩ be a cyclic group and consider

A = (Mk(Dr), α⊙ ϵ̃r),

with presentation PA = (r; (g1, . . . , gk)). Fix a ∈ [1, k] such that

wα⊙ϵ̃r(ga) = max{wα⊙ϵ̃r(h) | h ∈ Iα⊙ϵ̃r}.

Then there exists a homogeneous multilinear polynomial ΨA ∈ F ⟨X;G⟩ of degree 1G such that

(i) ΨA /∈ IdG(A) and, for all ℓ ∈ [1, k], such that Hrgℓ = Hrga, there exists a suitable non-zero

graded evaluation ρ : F ⟨X;G⟩ → A, at elements of the canonical basis of A, with

ρ(ΨA) = eℓℓ ⊗ E0.

(ii) If ρ is a graded evaluation of ΨA, at elements of the canonical basis of A, then

ρ(ΨA) ∈
⊕

i∈TA; gi∈Hα⊙ϵ̃rga

A
(gi)
1G
.
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Proof. Define, for every i ∈ TA, ti := wα⊙ϵ̃r(ga)wα⊙ϵ̃r(hi), and consider the following polyno-

mial

ψi :=
∑

σ∈Sym(ti)

(−1)σu
(i)
σ(1)v

(i)
1 u

(i)
σ(2)v

(i)
2 · · ·u(i)σ(ti)

v
(i)
ti ,

where the sets {u(i)1 , . . . , u
(i)
ti } and {v(i)1 , . . . , v

(i)
ti }, with i ∈ TA, are pairwise disjoint sets of

homogeneous variables of degree

|u(i)l |F ⟨X;G⟩ := g−1
a hi and |v(i)l |F ⟨X;G⟩ := h−1

i ga,

for all l ∈ [1, ti]. Then define the polynomial

ΨA := Πi∈TA
ψi.

Notice that each ψi is a homogeneous multilinear graded polynomial of degree 1G and thus the

same holds for ΨA.

Take an integer ℓ ∈ [1, k] such that Hrgℓ = Hrga. We claim that, for all i ∈ TA, there exists

a graded evaluation ρi of ψi, at elements of the canonical basis of A, such that

ρi(ψi) = eℓℓ ⊗ E0.

Indeed, we remark that there are wα⊙ϵ̃r(ga) elements of the coset Hrga appearing in g̃,

whereas wα⊙ϵ̃r(hi) elements of the coset Hrhi appearing in g̃. Thus, just write all the ti =

wα⊙ϵ̃r(ga)wα⊙ϵ̃r(hi) elements epq of the basis of Mk, such that Hrgp = Hrga and Hrgq = Hrhi,

in some sequence ep1q1 , . . . , eptiqti , with p1 = ℓ. Then, by writing, for each l ∈ [1, ti], gpl = (ϵs)alga

and gql = (ϵs)blhi, consider the following evaluations in the variables u
(i)
l and v

(i)
l :

u
(i)
l 7→ eplql ⊗ Eal−bl , for all l ∈ [1, ti],

v
(i)
l 7→ eqlpl+1

⊗ Ebl−al+1 , for all l ∈ [1, ti − 1],

v
(i)
ti 7→ eqtiℓ ⊗ Ebti−ℓ,

and we obtain ρi(ψi) = eℓℓ ⊗ E0.

Therefore, by considering, for each i ∈ TA, the above evaluates ρi in ψi we get a graded

evaluation ρ of ΨA, at elements of the canonical basis of A, resulting in eℓℓ ⊗ E0, and thus we

concluded the proof of item (i).

In order to prove item (ii), we remember that

A1G =
⊕
i∈TA

A
(gi)
1G
,
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where, for each i ∈ TA, A
(gi)
1G

:= spanF{epq ⊗ El | Hrgp = Hrgq = Hrgi and g
−1
p (ϵs)lgq = 1G}.

Once ΨA is a homogeneous multilinear polynomial of degree 1G, we can suppose that if ρ is a

non-zero graded evaluation of ΨA, then ρ must be in a unique component of the sum in A1G .

Assume that ρ(ΨA) ∈ A
(gb)
1G

, for some gb such that Hrgb ̸= Hrga. Consequently, each ψi has also

a non-zero graded evaluation in A
(gb)
1G

, and then each product u
(i)
σ(l)v

(i)
l appearing in this ψi has

non-zero graded evaluations resulting in linear combinations of elements epq ⊗ Ec−d, such that

Hrgp = Hrgq = Hrgb, with gp = (ϵs)cgp and gq = (ϵs)dgb.

Thus, for all i ∈ TA, we must evaluate the ti = wα⊙ϵ̃r(ga)wα⊙ϵ̃r(hi) alternating variables u
(i)
l

of the polynomial ψi in

A
(gb)

g−1
a hi

:= spanF{epq ⊗ Ec′−d′ | gp = (ϵs)c
′
gb and gq = (ϵs)d

′
gbg

−1
a hi}.

We observe that dimF (A
(gb)

g−1
a hi

) = wα(Hrgb)wα(Hrgbg
−1
a hi) = wα⊙ϵ̃r(gb)wα⊙ϵ̃r(gbg

−1
a hi) and by

using the fact that the variables u
(i)
l are alternating and wα⊙ϵ̃r(ga) is maximum, one has that

wα⊙ϵ̃r(gb)wα⊙ϵ̃r(gbg
−1
a hi) = dimF (A

(gb)

g−1
a hi

) ≥ ti = wα⊙ϵ̃r(ga)wα⊙ϵ̃r(hi) ≥ wα⊙ϵ̃r(gb)wα⊙ϵ̃r(hi),

and hence wα⊙ϵ̃r(gbg
−1
a hi) ≥ wα⊙ϵ̃r(hi), for all i ∈ TA. Then

kr ≥
∑
i∈TA

wα⊙ϵ̃r(gbg
−1
a hi) ≥

∑
i∈TA

wα⊙ϵ̃r(hi) = kr,

and this implies that wα⊙ϵ̃r(gbg
−1
a hi) = wα⊙ϵ̃r(hi), for every i ∈ TA. Such equality allows us to

conclude that gbg
−1
a ∈ Hα⊙ϵ̃r and therefore ρ(ΨA) ∈

⊕
i∈TA; gi∈Hα⊙ϵ̃rga

A
(gi)
1G
, as desired.

Remark 3.2.4. By using the same notations which were introduced in the above lemma,

let A = (Mk(Dr), α⊙ ϵ̃r) with the following presentation PA = (r; (g1, . . . , gk)). Consider

B = (Mk(Dr), β ⊙ ϵ̃r) and suppose that there exists η ∈ G such that

β ⊙ ϵ̃r = lη · (α⊙ ϵ̃r).

This implies that PB = (r; (ηg1, . . . , ηgk)) is a presentation of B, still wβ(ηgi) = wα(gi),

for all i ∈ [1, k], and Hβ⊙ϵ̃r = Hα⊙ϵ̃r . Moreover, if a ∈ [1, k] is such that wα⊙ϵ̃r(ga) =

max{wα⊙ϵ̃r(h) | h ∈ Iα⊙ϵ̃r}, thus wβ⊙ϵ̃r(ηga) = max{wβ⊙ϵ̃r(h) | h ∈ Iβ⊙ϵ̃r} and the corre-

sponding polynomials ΨA and ΨB coincide. Therefore, if ρ is any graded evaluation of ΨA in

B, one has that

ρ(ΨA) ∈
⊕

i∈TA; gi∈Hβ⊙ϵ̃rga

(B1G)
(ηgi).
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3.3 Cn-simple algebras and (α⊙ ϵ̃r)-regularity

In Section 3.1, we described the finite dimensional Cn-simple F -algebras as graded subalge-

bras of matrix algebras endowed with some elementary gradings. In this section, we will deal

with the (α⊙ ϵ̃r)-regularity of these algebras.

Firstly, given A = (Mk(Dr), α⊙ ϵ̃r), we remember that the maps π̂•, π̂
∗
• : Ā→Mkr ⊗ P (A)

are, respectively, the restrictions of π• and π
∗
•, given by (2.1) and (2.2), to Ā = GenG(A), where

P (A) is the polynomial ring associated to A (see Section 2.1). In the sequel, we generalize

Proposition 2.3.2 for G-simple algebras, in case G is a finite cyclic group.

Proposition 3.3.1. Let G = ⟨ϵ⟩ be a cyclic group and consider

A = (Mk(Dr), g̃ ⊙ ϵ̃r) = (Mk(Dr), α⊙ ϵ̃r),

with presentation PA = (r; (g1, . . . , gk)).

The following statements are equivalent:

(i) The maps π̂h defined on GenG(A) are injective, for all h ∈ Iα⊙ϵ̃r ;

(ii) The maps π̂∗
h defined on GenG(A) are injective, for all h ∈ Iα⊙ϵ̃r ;

(iii) There exist a subgroup H of G and an element g ∈ G such that

Iα⊙ϵ̃r = gH,

and all fibers of the map α ⊙ ϵ̃r are equipotent, that is, there exists c ∈ N∗ such that

wα⊙ϵ̃r(h) = c, for all h ∈ Iα⊙ϵ̃r .

Proof. The proof is analogous to that of Proposition 2.3.2. Here we will only deduce the

implication of item (iii) to (i) since it contains important details to be highlighted.

Suppose that Iα⊙ϵ̃r = gH, for some subgroup H of G and some element g ∈ G. Moreover,

assume that all fibers of the map α ⊙ ϵ̃r are equipotent, that is, there exists c ∈ N∗ such that

wα⊙ϵ̃r(h) = c, for all h ∈ Iα⊙ϵ̃r . Then, it follows that wα(Hrh) = c, for all h ∈ Iα.

We claim that, for each l ∈ TA, π̂gl is injective if, and only if, π̂(ϵs)tgl is injective, for every

t ∈ [0, r − 1].

Indeed, let φ : F ⟨X;G⟩ → Ā = GenG(A) be the canonical G-graded epimorphism such that

ker(φ) = IdG(A), and fix ρ : F ⟨X;G⟩ → A an arbitrary graded evaluation.

Given l ∈ TA, assume that π̂gl is injective. Suppose, if possible, that there exists t
′ ∈ [1, r−1]

such that π̂(ϵs)t′gl is not injective. Thus there exists a non-zero element a′ in Ā satisfying

46



π̂(ϵs)t′gl(a
′) = 0. Take f ∈ F ⟨X;G⟩ such that φ(f) = a′. Hence, one has that

ρ(f) =
∑
i,j,t

d
(ij)
t (eij ⊗ Et), d

(ij)
t ∈ F,

with d
(pj)
t = 0, for all p ∈ [1, k] such that Hrgp = Hrgl, and for all j ∈ [1, k] and t ∈ [0, r − 1].

In particular, this implies that π̂gl(a
′) = 0, a contradiction. Therefore, π̂(ϵs)tgl is injective, for

every t ∈ [0, r − 1]. Since the reciprocal is trivial, we conclude the claim.

Therefore, in order to conclude that (i) is valid, it is enough to show that fixed ℓ ∈ TA and

an element a′ in Ā satisfying π̂gℓ(a
′) = 0, one has that a′ = 0.

To this end, define, for each γ ∈ TA,

Tγ := {i ∈ [1, k] | Hrgi = Hrgγ},

and, for each δ ∈ [1, k], set

Blδ := [(δ − 1)r + 1, δr].

As above, take f ∈ F ⟨X;G⟩ such that φ(f) = a′. We obtain that if ρ : F ⟨X;G⟩ → A is an

arbitrary graded evaluation, then

ρ(f) =
∑
i,j,t

d
(ij)
t E(i−1)r+1,(j−1)r+t+1,

with

d
(pj)
t = 0, ∀p ∈ [1, k] satisfying Hrgp = Hrgℓ,∀j ∈ [1, k],∀t ∈ [0, r − 1].

Fix an arbitrary ℓ′ ∈ TA and consider

ḡ := g−1
ℓ′ gℓ. (3.3)

Since Iα⊙ϵ̃r = gH and H is a subgroup of G, it follows that ḡ ∈ H and there exists θ ∈ Sym(TA)

such that

Hrgθ̄(l) = Hrḡgl, for all l ∈ TA,

and, in particular,

θ(ℓ′) = ℓ.

Moreover, the fact that all the fibers of the map α⊙ ϵ̃r are equipotent guarantees the existence

of θ ∈ Sym(k) satisfying

Hrgθ(l) = Hrḡgl, for all l ∈ [1, k],
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such that the restriction of θ to TA coincides with θ and θ(Tγ) = Tθ(γ), for all γ ∈ TA.

Now, from the above discussions, we have that there exists σ in Sym(kr) satisfying

σ(Blδ) = Blθ(δ), for all δ ∈ [1, k], (3.4)

and

(α⊙ ϵ̃r)(σ(ι)) = ḡ(α⊙ ϵ̃r)(ι), for all ι ∈ [1, kr]. (3.5)

Finally, define the map

Γ : (Mkr, α⊙ ϵ̃r) → (Mkr, α⊙ ϵ̃r)

Euv 7→ Eσ(u)σ(v).

Clearly Γ is a graded isomorphism. Furthermore, given i, j ∈ [1, k] and t ∈ [0, r − 1], one has

that

Γ(E(i−1)r+1,(j−1)r+t+1) =
(3.1)

Γ

(
r−1∑
l=0

E(i−1)r+l+1,(j−1)r+τ l(t)+1

)
=

r−1∑
l=0

Eσ((i−1)r+l+1),σ((j−1)r+τ l(t)+1).

Since there exist unique δ1 and δ2 such that, for all l, t ∈ [0, r − 1],

(i− 1)r + l + 1 ∈ Blδ1 and (j − 1)r + τ l(t) + 1 ∈ Blδ2 ,

it follows from (3.4) that

σ((i− 1)r + l + 1) ∈ Blθ(δ1), σ((j − 1)r + τ l(t) + 1) ∈ Blθ(δ2) (3.6)

and thus

Γ(E(i−1)r+1,(j−1)r+t+1) = Eσ((i−1)r+1),σ((j−1)r+t+1).

This implies that the map Γ induces a graded isomorphism on A.

We notice that Γρ : F ⟨X;G⟩ → A is still a graded evaluation and

Γ(ρ(f)) = Γ

(∑
i,j,t

d
(ij)
t E(i−1)r+1,(j−1)r+t+1

)
=
∑
i,j,t

d
(ij)
t Eσ((i−1)r+1),σ((j−1)r+t+1).

Since π̂gℓ(a
′) = 0, by combining (3.3), (3.5) and (3.6), we obtain that

d
(pj)
t = 0, ∀p ∈ [1, k] satisfying Hrgp = Hrgℓ′ ,∀j ∈ [1, k],∀t ∈ [0, r − 1].
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Thus, once gℓ′ is arbitrary, we conclude that d
(ij)
t = 0, for every i, j, t. Consequently, f ∈ IdG(A)

and this implies a′ = 0, as desired.

The next result classifies the G-simple (α⊙ ϵ̃r)-regular algebras.

Theorem 3.3.2 (Theorem 4.8 of [22]). Let G = ⟨ϵ⟩ be a cyclic group and consider

A = (Mk(Dr), α⊙ ϵ̃r).

Then A is (α⊙ ϵ̃r)-regular if, and only if, there exists g ∈ G such that

Iα⊙ϵ̃r = gHα⊙ϵ̃r .

In this case, [Hα⊙ϵ̃r : Hr] = |TA| and all fibers of the map α⊙ ϵ̃r are equipotent.

Proof. Proposition 3.3.1 and Lemma 2.3.3 guarantee that A is (α ⊙ ϵ̃r)-regular if, and only

if, Iα⊙ϵ̃r = gHα⊙ϵ̃r . In this case, it follows that |Hα⊙ϵ̃r | = |Iα⊙ϵ̃r | = r|TA| and consequently

[Hα⊙ϵ̃r : Hr] = |TA|. Finally, Proposition 3.3.1 guarantees the existence of c ∈ N∗ such that

c = wα⊙ϵ̃r(h), for all h ∈ Iα⊙ϵ̃r .

As a direct consequence of the previous theorem, we have the following result.

Corollary 3.3.3 (Corollary 4.9 of [22]). Let G = ⟨ϵ⟩ be a cyclic group and consider A =

(Mk(Dr), α⊙ ϵ̃r). Then A is a G-regular subalgebra of the matrix algebra (Mkr, α⊙ ϵ̃r) if, and

only if,

Hα⊙ϵ̃r = G.

Given A = (Mk(Dr), α⊙ ϵ̃r) and B = (Mk(Dr), β⊙ ϵ̃r), we finish this section by stating that

if B is graded-isomorphic to A, then B is (β ⊙ ϵ̃r)-regular if, and only if, A is (α⊙ ϵ̃r)-regular.

Moreover, in this case, we establish interesting relations between the images of the maps α⊙ ϵ̃r

and β ⊙ ϵ̃r.

Proposition 3.3.4 (Proposition 4.10 of [22]). Let G = ⟨ϵ⟩ be a cyclic group and consider

A = (Mk(Dr), α⊙ ϵ̃r) and B = (Mk(Dr), β ⊙ ϵ̃r).

Suppose that B is graded-isomorphic to A. Then B is (β ⊙ ϵ̃r)-regular if, and only if, A is

(α⊙ ϵ̃r)-regular.

In this case, if gα, gβ ∈ G are such that Iα⊙ϵ̃r = gαHα⊙ϵ̃r and Iβ⊙ϵ̃r = gβHβ⊙ϵ̃r , then g ∈ G

is such that

wβ⊙ϵ̃r(gx) = wα⊙ϵ̃r(x), for all x ∈ G,
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if, and only if,

g ∈ gβHα⊙ϵ̃rg
−1
α = gβHβ⊙ϵ̃rg

−1
α .

Proof. Since B is graded-isomorphic to A, it follows from Proposition 3.2.1 that there exists

g ∈ G such that

Iβ⊙ϵ̃r = gIα⊙ϵ̃r and Hβ⊙ϵ̃r = Hα⊙ϵ̃r .

By combining the above equalities with Theorem 3.3.2, we conclude that B is (β ⊙ ϵ̃r)-regular

if, and only if, A is (α⊙ ϵ̃r)-regular.

Now, assume that gα, gβ ∈ G are such that

Iα⊙ϵ̃r = gαHα⊙ϵ̃r and Iβ⊙ϵ̃r = gβHβ⊙ϵ̃r .

If g ∈ G is such that wβ⊙ϵ̃r(gx) = wα⊙ϵ̃r(x), for all x ∈ G, then, in particular,

wβ⊙ϵ̃r(ggα) = wα⊙ϵ̃r(gα) ̸= 0

and this implies that ggα = gβh, for some h ∈ Hα⊙ϵ̃r . Hence, g ∈ gβHα⊙ϵ̃rg
−1
α .

Conversely, assume that g ∈ gβHα⊙ϵ̃rg
−1
α , that is, g = gβhg

−1
α , for some h ∈ Hα⊙ϵ̃r . In this

case, it is valid that

wβ⊙ϵ̃r(gx) = wα⊙ϵ̃r(x), for all x ∈ G.

In fact, if x ∈ Iα⊙ϵ̃r , then wα⊙ϵ̃r(x) ̸= 0 and x = gαh̃, for some h̃ ∈ Hα⊙ϵ̃r . Thus

wβ⊙ϵ̃r(gx) = wβ⊙ϵ̃r(gβhg
−1
α gαh̃) = wβ⊙ϵ̃r(gβhh̃) ̸= 0.

By using the fact that there exists c ∈ N∗ such that wα⊙ϵ̃r(y) = wβ⊙ϵ̃r(z) = c, for all y ∈ Iα⊙ϵ̃r

and z ∈ Iβ⊙ϵ̃r , we conclude that wβ⊙ϵ̃r(gx) = wα⊙ϵ̃r(x). On the other hand, if x /∈ Iα⊙ϵ̃r , it is

easy to verify that wβ⊙ϵ̃r(gx) = wα⊙ϵ̃r(x) = 0.

50



Chapter 4

The factorability of the TCn-ideals

IdCn(UTCn(A1, . . . , Am))

Let F be an algebraically closed field of characteristic zero. Consider ϵ a primitive nth root

of the unity in F ∗ and G = ⟨ϵ⟩ = Cn, the finite cyclic group generated by ϵ. Moreover, consider

A1, . . . , Am finite dimensional G-simple algebras. If p is a prime number and G is a p-group,

that is, the order of G is a power of p, in this chapter, we will present necessary and sufficient

conditions to the factorability of the TG-ideals IdG(UTG(A1, . . . , Am)) of the G-graded upper

block triangular matrix algebras UTG(A1, . . . , Am) endowed with elementary G-gradings.

We will see that such factorability is associated to the concept of G-regularity of the G-

simple algebras A1, . . . , Am and the number of non-isomorphic G-gradings on UTG(A1, . . . , Am).

Such statements are similar to those obtained by Avelar, Di Vincenzo and da Silva, in case

n = 2 (see [7]). Nevertheless, it is worth saying that in our works we use different techniques

from those applied in [7]. In particular, the invariance subgroups associated to the G-simple

blocks A1, . . . , Am are important and crucial tools in obtaining several results.

Still, if m = 2 and by requiring some assumptions on the G-simple algebras A1 and A2,

we also will establish conditions for the factorability of IdG(UTG(A1, A2)), even when G is not

necessarily a p-group. In this case, we will see that the factorability of the TG-ideal of the

algebra UTG(A1, A2) is not necessarily related with the concept of G-regularity.

The results cited above were obtained with the participation of Professor Viviane Ribeiro

Tomaz da Silva and Professor Onofrio Mario Di Vincenzo, and are available in [22]. Further-

more, in order to achieve these results, we will employ, in this chapter, some different tools

from those used in our paper ([22]). In particular, the indecomposable TG-ideals allowed us to

exhibit some alternative proofs for our results.
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4.1 The algebra UTCn(A1, . . . , Am) and the invariance sub-

groups

In this section, we will focus on the G-graded upper block triangular matrix algebras

UTG(A1, . . . , Am), where A1, . . . , Am are finite dimensional G-simple algebras. In order to

obtain relations between IdG(UTG(A1, . . . , Am)) and the invariance subgroups of the G-simple

components A1, . . . , Am, we will establish some technical results associated to such algebras

UTG(A1, . . . , Am).

First, fix an m-tuple (A1, . . . , Am) of finite dimensional G-simple F -algebras. In light of

Theorem 3.1.3, we may assume that

Al = (Mkl(Drl), g̃l ⊙ ϵ̃rl) = (Mkl(Drl), αl ⊙ ϵ̃rl) = (Mkl(Drl), α̃l),

where α̃l := αl ⊙ ϵ̃rl and g̃l := (gl1, gl2, . . . , glkl) is such that PAl
= (rl; g̃l) is a presentation of

Al. We remember that the tuples g̃l and ϵ̃rl = (1G, ϵ
sl , . . . , (ϵsl)rl−1) induce, respectively, the

elementary gradings in Mkl and Drl .

Consider the G-graded upper block triangular matrix algebra A := (UT (A1, . . . , Am), α̃)

(see Section 1.1). In this case, for each l ∈ [1,m], it follows that

ηl =
l∑

ι=1

kιrι and Bll := [ηl−1 + 1, ηl].

Moreover, for each l ∈ [1,m], given g ∈ G we set

w
(l)
α̃ (g) := |{i | i ∈ Bll and α̃(i) = g}|

and we denote by H(l)
α̃ the invariance subgroup of the G-simple algebra Al,l, that is,

H(l)
α̃ := {h ∈ G | w(l)

α̃ (hg) = w
(l)
α̃ (g), for all g ∈ G}.

Remark 4.1.1. The set formed by the elements

• E
(u,v)
ij , for all 1 ≤ u < v ≤ m, with i ∈ [1, kuru], j ∈ [1, kvrv];

• (eij ⊗ Et)(u,u), for all u ∈ [1,m], with i, j ∈ [1, ku] and t ∈ [0, ru − 1]

is a homogeneous basis of the vector space A, called its canonical basis. Such basis will be

denoted by B. Notice that B is a multiplicative basis of A (since, given b1, b2 ∈ B, if b1b2 ̸= 0A,

then b1b2 ∈ B).
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The next result resembles Lemma 3.3 of [17] and presents important properties related to

elements of the basis B.

Lemma 4.1.2 (Lemma 3.4 of [31]). Let b1, . . . , bl ∈ B and assume that b := b1 · · · bl ̸= 0A.

(i) If b ∈ Aℓ, then bi ∈ Aℓ for every i ∈ [1, l], and b = (eij ⊗ Et)(ℓ,ℓ), for some i, j ∈ [1, kℓ]

and t ∈ [0, rℓ − 1]. Moreover, if bπ := bπ(1) · · · bπ(l) ̸= 0A for some π ∈ Sym(l), then

bπ = (eij ⊗Et)(ℓ,ℓ) when i ̸= j, whereas bπ = (el′l′ ⊗Et)(ℓ,ℓ) for some l′ ∈ [1, kℓ] otherwise.

(ii) If b ∈ J(A), then there exist 1 ≤ u < v ≤ m, i ∈ [1, kuru] and j ∈ [1, kvrv] such that

b = E
(u,v)
ij . Moreover if bπ := bπ(1) · · · bπ(l) ̸= 0A for some π ∈ Sym(l), then bπ = E

(u,v)
ij .

Proof. First, remember thatB is a multiplicative basis ofA. The initial statement given in item

(i) follows directly by applying (1.1) and the fact that A = Ass+J(A), where Ass = A1⊕· · ·⊕Am

is a direct sum as algebras.

Now, for each ι ∈ [1, l], by writing bι = (eiιjι ⊗ Etι)(ℓ,ℓ), we have

(eij ⊗ Et)(ℓ,ℓ) = b = b1b2 · · · bl = (ei1j1 ⊗ Et1)(ℓ,ℓ) · (ei2j2 ⊗ Et2)(ℓ,ℓ) · · · (eiljl ⊗ Etl)(ℓ,ℓ)

= (ei1j1ei2j2 · · · eiljl ⊗ Et1+t2+···+tl)(ℓ,ℓ).

Thus, since (ei′j′ ⊗Et′)(u
′,u′) · (ei′′j′′ ⊗Et′′)(u

′′,u′′) = δu′u′′δj′i′′(ei′j′′ ⊗Et′+t′′)(u
′,u′′), it follows that

t1 + t2 + · · ·+ tl ≡ t (mod rℓ), i1 = i, jl = j and jι = iι+1, for all ι ∈ [1, l − 1].

Notice that the rows i2, . . . , il and the columns j1, . . . , jl−1 such that jι = iι+1 are appearing in

pairs. This means that if i ̸= j, then

|{ι ∈ [1, l] | iι = i}| = 1+|{ι ∈ [1, l] | jι = i}| and |{ι ∈ [1, l] | jι = j}| = 1+|{ι ∈ [1, l] | iι = j}|.

Therefore, if i ̸= j and bπ ̸= 0A, we conclude that bπ = (eij ⊗ Et)(ℓ,ℓ). Similarly, in case i = j,

we have bπ = (el′l′ ⊗ Et)(ℓ,ℓ), for some l′ ∈ [1, kℓ].

Finally, we can argue analogously to what was done above and to conclude the proof of (ii).

In the sequel, we present a technical lemma which is crucial for our aims.

Lemma 4.1.3 (Lemma 5.4 of [22]). The Capelli polynomial Capl(x1, . . . , xl; xl+1, . . . , x2l+1) is

an ordinary polynomial identity for the upper block triangular matrix algebra UT (A1, . . . , Am)

if, and only if, l ≥ m+
∑m

i=1 k
2
i . In particular, if m ≥ 2, define t := m− 1 +

∑m
i=1 k

2
i , for any

u ∈ [1, η1] and v ∈ [ηm−1 + 1, ηm] there exists an evaluation of Capt(x1, . . . , xt; xt+1, . . . , x2t+1)

in UT (A1, . . . , Am), at canonical basis elements, equal to E
(1,m)
uv .
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Proof. First, given l ≥ 1, we set fl := Capl(x1, . . . , xl; xl+1, . . . , x2l+1) andA := UT (A1, . . . , Am).

In order to conclude the proof of the lemma, we will show that fl /∈ Id(A) if, and only if,

l ≤ t1m := m− 1 +
∑m

1=1 k
2
i . To this end, let us apply an induction on m.

The case m = 1 is guaranteed by Lemma 3.1.4.

Assume that m ≥ 2 and suppose that fl′ /∈ Id(UT (Ai1 , . . . , Aip)), with 1 ≤ i1 < i2 < · · · <
ip ≤ m and 1 ≤ p ≤ m − 1, if, and only if, l′ ≤ p − 1 +

∑p
s=1 k

2
is . We start by assuming that

fl /∈ Id(A). Since fl is multilinear, it follows that there exists a non-zero evaluation of fl, at

canonical basis elements of A, which we will denote by f̄l.

Notice that, if x̄1, . . . , x̄2l+1 /∈ J(A), then there exists ℓ ∈ [1,m] such that x̄1, . . . , x̄2l+1 ∈ Aℓ

and, hence, we finish by applying the case m = 1. Therefore, assume that there exists at least

one positive integer ℓ ∈ [1, 2l + 1] such that x̄ℓ ∈ Ai,j ⊆ J(A), with i < j.

If ℓ ∈ [1, l], then we can suppose that

x̄l+1x̄1x̄l+2 · · · x̄l+ℓx̄ℓx̄l+ℓ+1 · · · x̄lx̄2l+1 ̸= 0

and this implies

x̄l+1x̄1x̄l+2 · · · x̄l+ℓ ∈ Ai′,i, with 1 ≤ i′ ≤ i,

and

x̄l+ℓ+1 · · · x̄lx̄2l+1 ∈ Aj,j′ , with j ≤ j′ ≤ m.

Consequently, we have x̄1, . . . , x̄ℓ−1, x̄l+1, . . . , x̄l+ℓ ∈ A[i′,i] and x̄ℓ+1, . . . , x̄l, x̄l+ℓ+1, . . . , x̄2l+1 ∈
A[j,j′].

We remark that, given σ ∈ Sym(l), if either σ(ℓ) ̸= ℓ, or there exists q ∈ [1, ℓ− 1] such that

σ(q) ∈ [ℓ+ 1,m], or there exists q ∈ [ℓ+ 1,m] such that σ(q) ∈ [1, ℓ− 1], thus we obtain

x̄l+1x̄σ(1)x̄l+2 · · · x̄2lx̄σ(l)x̄2l+1 = 0,

since i′ ≤ i < j ≤ j′ and Ar,sAr′,s′ = δsr′Ar,s′ , for all r, s, r
′, s′ ∈ [1,m]. Therefore, we can write

f̄l = fℓ−1(x̄1, . . . , x̄ℓ−1, x̄l+1, . . . , x̄l+ℓ)x̄ℓfl−ℓ(x̄ℓ+1, . . . , x̄l, x̄l+ℓ+1, . . . , x̄2l+1),

where 0 ̸= f̄ℓ−1 ∈ A[i′,i] and 0 ̸= f̄l−ℓ ∈ A[j,j′]. Once A[i′,i] ∼= UT (Ai′ , . . . , Ai) and A[j,j′] ∼=
UT (Aj, . . . , Aj′), with 1 ≤ i − i′ + 1 ≤ m − 1 and 1 ≤ j′ − j + 1 ≤ m − 1, by applying the

induction hypothesis one has that

ℓ− 1 ≤ i− i′ +
i∑

s=i′

k2s and l − ℓ ≤ j′ − j +

j′∑
s=j

k2s ,
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and hence

ℓ− 1 ≤ i− i′ +
i∑

s=1

k2s and l − ℓ ≤ j′ − j +
m∑
s=j

k2s .

This allows us to obtain

l − 1 ≤ j′ − j + i− i′ +
i∑

s=1

k2s +
m∑
s=j

k2s ,

and, since i− j ≤ −1, we conclude that

l ≤ j′ − i′ +
m∑
s=1

k2s ≤ m− 1 +
m∑
s=1

k2s ,

as desired.

On the other hand, if ℓ ∈ [l + 1, 2l + 1], then ℓ = l + ℓ′, with ℓ′ ∈ [1, l + 1]. We remember

that there exist diagonal elements ei ∈ Ai,i and ej ∈ Aj,j, in the canonical basis of A, such that

x̄ℓ = eix̄ℓej, with i < j, and thus, similarly to the previous case, we can write

f̄l = fℓ′−1(x̄1, . . . , x̄ℓ′−1, x̄l+1, . . . , x̄l+ℓ′−1, ei)x̄ℓfl−ℓ′+1(x̄ℓ′ , . . . , x̄l, ej, x̄l+ℓ′+1, . . . , x̄2l+1)

and we are done.

Conversely, assume that l ≤ t1m. In order to conclude the proof, we show that fl /∈ Id(A).

We define t10 := −1 and, for each ℓ ∈ [1,m], we consider the following evaluation given by k2ℓ
distinct elements of the canonical basis of Aℓ:

x̄t1,ℓ−1+2 · · · x̄t1,ℓ = (e11 ⊗ E0)(ℓ,ℓ) · (e12 ⊗ E0)(ℓ,ℓ) · (e22 ⊗ E0)(ℓ,ℓ) · (e21 ⊗ E0)(ℓ,ℓ)·
(e13 ⊗ E0)(ℓ,ℓ) · (e33 ⊗ E0)(ℓ,ℓ) · (e32 ⊗ E0)(ℓ,ℓ) · (e23 ⊗ E0)(ℓ,ℓ)·
(e31 ⊗ E0)(ℓ,ℓ) · (e14 ⊗ E0)(ℓ,ℓ) · (e44 ⊗ E0)(ℓ,ℓ) · · · (ekℓ1 ⊗ E0)(ℓ,ℓ)

= (e11 ⊗ E0)(ℓ,ℓ).

Still, for all ℓ ∈ [1,m − 1], consider x̄t1,ℓ+1 = E
(ℓ,ℓ+1)
11 . Thus, given u ∈ [1, η1] and v ∈ [ηm−1 +

1, ηm], there exist suitable diagonal elements x̄l+1, . . . , x̄2l+1, of the canonical basis of A, such

that

x̄l+1x̄1x̄l+2 · · · x̄2lx̄lx̄2l+1 = E(1,m)
uv ,

and, for every σ ∈ Sym(l), with σ ̸= 1, we have

x̄l+1x̄σ(1)x̄l+2 · · · x̄2lx̄σ(l)x̄2l+1 = 0.
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Then fl(x̄1, · · · , x̄2l+1) = E
(1,m)
uv and this means that fl /∈ Id(A).

From now on, let us fix an m-tuple (A1, . . . , Am) of finite dimensional G-simple F -algebras

and consider A := (UT (A1, . . . , Am), α̃) and B := (UT (A1, . . . , Am), β̃) such that β̃ is α̃-

admissible. Moreover, for each l ∈ [1,m], let us assume that (Al, α̃l) and (Al, β̃l) have the

following presentations:

P(Al,α̃l) = (rl; (gl1, . . . , glkl)) and P(Al,β̃l)
= (rl; (g̃l1, . . . , g̃lkl)).

The next result relates the invariance subgroups of the G-simple algebras Al,l and the ideals

of G-graded polynomial identities of the algebras A and B. Such result is a generalization of

our Lemma 5.5, stated in [22].

Proposition 4.1.4. Let G = ⟨ϵ⟩ be a cyclic group. Suppose that m ≥ 2,

β̃1 = lh · α̃1 and β̃m = lη · α̃m,

for some h, η ∈ G such that h−1η /∈ H(1)
α̃ H(m)

α̃ . Then IdG(B) * IdG(A) and IdG(A) * IdG(B).

Proof. In order to obtain that IdG(B) * IdG(A), let us construct a suitable graded polynomial

f such that f ∈ IdG(B) and f /∈ IdG(A). The proof of IdG(A) * IdG(B) follows in an analogous

way.

First, let us suppose, without loss of generality, that

wα1⊙ϵ̃r1
(g11) = max{wα1⊙ϵ̃r1

(h) | h ∈ Iα1⊙ϵ̃r1
}

and

wαm⊙ϵ̃rm (gm1) = max{wαm⊙ϵ̃rm (h) | h ∈ Iαm⊙ϵ̃rm}.

Denote t1m := m − 1 +
∑m

i=1 k
2
i . By invoking Lemma 4.1.3, there exists an evaluation of

the polynomial Capt1m(x1, . . . , xt1m ;xt1m+1, . . . , x2t1m+1) in the algebra UT (A1, . . . , Am), at its

canonical basis elements, resulting in E1,ηm−1+1. Now, consider the multilinear graded poly-

nomial Capt1m(u1, . . . , ut1m ;ut1m+1, . . . , u2t1m+1) built in a such way that each homogeneous

variable ui has the degree, induced by α̃, of the canonical basis element used in the above

evaluation. Then Capt1m(u1, . . . , ut1m ;ut1m+1, . . . , u2t1m+1) has a graded evaluation in A equal

to E
(1,m)
11 = E1,ηm−1+1. Still, once

|E(1,m)
11 |A = |E1,ηm−1+1|A = α̃(1)−1α̃(ηm−1 + 1) = g−1

11 gm1

it follows that Capt1m(u1, . . . , ut1m ;ut1m+1, . . . , u2t1m+1) has homogeneous degree being g−1
11 gm1
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as an element of F ⟨X;G⟩.

Thus, by item (i) of Lemma 3.2.3, there exist homogeneous multilinear polynomials ΨA1

and ΨAm , in pairwise disjoint sets of homogeneous variables (and also distinct from those of the

set {u1, . . . , u2t1m+1}), with evaluations ρ1 : F ⟨X;G⟩ → A and ρm : F ⟨X;G⟩ → A, such that

ρ1(ΨA1) = (e11 ⊗ E0)(1,1) and ρm(ΨAm) = (e11 ⊗ E0)(m,m).

Therefore, by setting

f := ΨA1Capt1m(u1, . . . , ut1m ; ut1m+1, . . . , u2t1m+1)ΨAm ,

we have that f /∈ IdG(A).

Our next step is to show that f ∈ IdG(B). We start by remarking that any non-zero graded

evaluation of Capt1m(u1, . . . , ut1m ; ut1m+1, . . . , u2t1m+1) in B must give elements of J(B)m−1

which are linear combinations of matrix units Epq of homogeneous degree equal to g−1
11 gm1,

that is, matrices Epq ∈ J(B)m−1 such that

β̃(p)−1β̃(q) = g−1
11 gm1.

Thus, in order to have that f is not a graded identity of B, the homogeneous multilinear

polynomials ΨA1 and ΨAm must be evaluated, respectively, in A1 and Am.

If ρ1 and ρm are graded evaluations, respectively, of ΨA1 and ΨAm in, respectively, A1 and

Am (with the grading induced by β̃), since β̃1 = lh · α̃1 and β̃m = lη · α̃m, from Remark 3.2.4,

such evaluations satisfy

ρ1(ΨA1) ∈
⊕

i∈TA1
; g1i ∈H(1)

β̃
g11

(A1)
(hg1i)
1G

and ρm(ΨAm) ∈
⊕

j∈TAm ; gmj∈H
(m)

β̃
gm1

(Am)
(ηgmj)
1G

.

In particular, the evaluation of ΨA1 results in linear combinations of basis canonical elements

(euv ⊗ Ea−b)(1,1) ∈ ((A1)
(hg1i)
1G

, β̃1 = β1 ⊙ ϵ̃r1) such that

β1(u) = h(ϵs1)ag1i and β1(v) = h(ϵs1)bg1i, for some a, b ∈ [0, r1 − 1],

and once g1i ∈ H(1)

β̃
g11, we have

β1(u) = h(ϵs1)ah1ig11 and β1(v) = h(ϵs1)bh1ig11, for some h1i ∈ H(1)

β̃
;

whereas, one has that the evaluation of ΨAm results in linear combinations of basis canonical
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elements (euv ⊗ Ec−d)(m,m) ∈ ((Am)
(ηgmj)
1G

, β̃m = βm ⊙ ϵ̃rm) such that

βm(u) = η(ϵsm)chmjgm1 and βm(v) = η(ϵsm)dhmjgm1, for some hmj ∈ H(m)

β̃
,

with c, d ∈ [0, rm − 1].

Thus, from above discussions, we have that there exist l1 ∈ [0, r1 − 1] and lm ∈ [0, rm − 1]

such that

g−1
11 gm1 = β̃(p)−1β̃(q) = (h(ϵs1)bh1ig11(ϵ

s1)l1)−1η(ϵsm)chmjgm1(ϵ
sm)lm

which implies that h−1η = (ϵs1)b+l1h1i(ϵ
sm)−(c+lm)h−1

mj. Since ⟨ϵs1⟩ ⊆ H(1)

β̃
and ⟨ϵsm⟩ ⊆ H(m)

β̃
, we

conclude that h−1η ∈ H(1)

β̃
H(m)

β̃
= H(1)

α̃ H(m)
α̃ , a contradiction with our hypotheses. Hence, this

forces f ∈ IdG(B), as required, and then IdG(B) * IdG(A).

We can generalize the previous proposition in the following manner:

Proposition 4.1.5. Let G = ⟨ϵ⟩ be a cyclic group. Assume that, for 1 ≤ a < b ≤ m,

β̃a = lh · α̃a and β̃b = lη · α̃b,

for some h, η ∈ G such that h−1η /∈ H(a)
α̃ H(b)

α̃ . Then IdG(B) * IdG(A) and IdG(A) * IdG(B).

Proof. Firstly, Proposition 4.1.4 guarantees that there exists a multilinear graded polynomial

f such that

f /∈ IdG(A
[a,b]) and f ∈ IdG(B

[a,b]).

Define t1a := a − 1 +
∑a

j=1 k
2
j and tbm := m − b +

∑m
j=b k

2
j . It follows from Lemma 4.1.3

that we can build graded multilinear polynomials ft1a := Capt1a(u1, . . . , ut1a ;ut1a+1, . . . , u2t1a+1)

and ftbm := Captbm(v1, . . . , vtbm ; vtbm+1, . . . , v2tbm+1), in pairwise disjoint sets of homogeneous

variables (also distinct from those involved in f), such that ft1a /∈ IdG(A
[1,a]) and ftbm /∈

IdG(A
[b,m]).

Therefore, by considering new distinct variables xg, x̃g, for each g ∈ G, and setting

f̃ := ft1a

(∑
g∈G

xg

)
f

(∑
g∈G

x̃g

)
ftbm ,

it is easy to see that f̃ /∈ IdG(A).

Finally, we claim that f̃ ∈ IdG(B). Indeed, from Lemma 4.1.3, one has

ft1a ∈ IdG(B
[1,l]), for all l < a,
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and

ftbm ∈ IdG(B
[l′,m]), for all l′ > b.

Therefore, in order to obtain a non-zero evaluation, we must evaluate the polynomial ft1a

in B[1,l], for some l ≥ a, whereas ftbm in B[l′,m], for some l′ ≤ b, and thus (
∑
xg)f(

∑
x̃g) in

B[l,l′]. Then, once

B[l,l′] ⊆ B[a,b] and f ∈ IdG(B
[a,b]),

we obtain f̃ ∈ IdG(B) and, hence, IdG(B) * IdG(A). Analogously, we conclude that IdG(A) *
IdG(B).

Finally, when m = 2, we can also relate, in a special case, the invariance subgroups of the

G-simple algebras A1 and A2 with the factoring property.

Proposition 4.1.6 (Theorem 5.9 of [22]). Let G = ⟨ϵ⟩ be a cyclic group. If m = 2 and

(Ai, α̃i) is α̃i-regular, for all i ∈ [1, 2], then the TG-ideal IdG(A) is factorable if, and only if,

H(1)
α̃ H(2)

α̃ = G.

Proof. If H(1)
α̃ H(2)

α̃ ̸= G, by the previous proposition there exists an α̃-admissible G-grading β̃

on UT (A1, A2) such that for the corresponding G-graded algebra B we have IdG(A) * IdG(B).

Hence IdG(A) ̸= IdG(A1)IdG(A2), since by Lemma 1.2.5, IdG(A1)IdG(A2) ⊆ IdG(B).

Conversely, if H(1)
α̃ H(2)

α̃ = G the result follows by Corollary 2.2.2 and Theorem 3.3.2.

4.2 The factorability and the indecomposable TCn-ideals

Let A1, . . . , Am be finite dimensional G-simple F -algebras and consider the G-graded upper

block triangular matrix algebra UTG(A1, . . . , Am). In Section 1.2, we presented the definition of

decomposable and indecomposable TG-ideals. These concepts are important tools in obtaining

results related to the factorability of the TG-ideal IdG(UTG(A1, . . . , Am)). We recall here that

the notion of weakly factorable appears in Definition 2.1.3. The first result associated to

decomposable TG-ideals is the following:

Proposition 4.2.1. Let G = ⟨ϵ⟩ be a cyclic group and A = (UT (A1, . . . , Am), α̃). The TG-ideal

IdG(A) is decomposable if, and only if, m ≥ 2 and IdG(A) is weakly factorable.

Proof. If m = 1, from Lemma 1.2.3, it follows that IdG(A) is indecomposable.

Let us study the case m ≥ 2. If IdG(A) is weakly factorable, then there exist integers

1 ≤ c1 < c2 < · · · < cu < m such that

IdG(A) = IdG(A
[1,c1])IdG(A

[c1+1,c2]) · · · IdG(A
[cu+1,m]).

59



By invoking Lemma 1.2.5, we can conclude that

IdG(A
[1,c1])IdG(A

[c1+1,c2]) · · · IdG(A
[cu+1,m]) ⊆ IdG(A

[1,c1])IdG(A
[c1+1,m]) ⊆ IdG(A),

and, hence, we obtain

IdG(A) = IdG(A
[1,c1])IdG(A

[c1+1,m]).

By combining the facts that A[1,c1] ∼= UTG(A1, . . . , Ac1) and A[c1+1,m] ∼= UTG(Ac1+1, . . . , Am)

with Lemma 4.1.3, one has that

IdG(A
[1,c1]) ̸= IdG(A) and IdG(A

[c1+1,m]) ̸= IdG(A).

Consequently, IdG(A) is a decomposable TG-ideal.

Conversely, assume that IdG(A) is decomposable. Thus m ≥ 2 and there exist TG-ideals

I1 ̸= IdG(A) and I2 ̸= IdG(A) such that

IdG(A) = I1I2.

We claim that, for any v ∈ [1,m− 1],

either I1 ⊆ IdG(A
[1,v]) or I2 ⊆ IdG(A

[v,m]).

In fact, suppose, if possible, that there exist

f1 ∈ I1 \ IdG(A
[1,v]) and f2 ∈ I2 \ IdG(A

[v,m]),

for some v ∈ [1,m − 1]. This means that there exist graded evaluations ρ1 : F ⟨X;G⟩ → A[1,v]

and ρ2 : F ⟨X;G⟩ → A[v,m] such that

ρ1(f1) = a ̸= 0 and ρ2(f2) = b ̸= 0.

In this case, we remark that there exist ω ∈ A such that aωb ̸= 0. Then, the polynomial

f1(
∑

g∈G x
g)f2 is not a graded polynomial identity for A and also it satisfies f1(

∑
g∈G x

g)f2 ∈
I1I2 = IdG(A), a contradiction.

Moreover, by using the above claim, it is easy to verify that I1 ⊆ IdG(A
[1,1]). Consider

ℓ := max{v | I1 ⊆ IdG(A
[1,v])}. Thus I1 * IdG(A

[1,ℓ+1]) and we notice that ℓ ̸= m. By applying

again the above claim, it follows that I2 ⊆ IdG(A
[ℓ+1,m]). Therefore, we have

IdG(A) = I1I2 ⊆ IdG(A
[1,ℓ])IdG(A

[ℓ+1,m]) ⊆ IdG(A)
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and, hence, IdG(A) = IdG(A
[1,ℓ])IdG(A

[ℓ+1,m]). Then IdG(A) is weakly factorable, as desired.

The next result presents a sufficient condition for the TG-ideal of UTG(A1, . . . , Am) be inde-

composable. Such condition is related to the invariance subgroups of the G-simple components

A1 and Am.

Proposition 4.2.2. Let G = ⟨ϵ⟩ be a cyclic group. If m ≥ 2 and H(1)
α̃ H(m)

α̃ ̸= G, then the

TG-ideal IdG((UT (A1, . . . , Am), α̃)) is indecomposable.

Proof. First, let us denote A := (UT (A1, . . . , Am), α̃). Suppose, by contradiction, that IdG(A)

is decomposable. From Proposition 4.2.1, there exist 1 ≤ c1 < c2 < · · · < cu < m such that

IdG(A) = IdG(A
[1,c1])IdG(A

[c1+1,c2]) · · · IdG(A
[cu+1,m]).

Consider the G-graded upper block triangular matrix algebra B = (UT (A1, . . . , Am), β̃) where

β̃(j) =

{
α̃(j) if 1 ≤ j ≤ ηcu

lϵ · α̃(j) if ηcu + 1 ≤ j ≤ ηm.

Once β̃(j) = α̃(j), for all j ∈ [1, ηcu ], one has that (UT (A1, . . . , Acu), β̃) = (UT (A1, . . . , Acu), α̃)

and hence IdG(B
[ci−1+1,ci]) = IdG(A

[ci−1+1,ci]), for all i ∈ [1, u], by setting c0 := 0. Still, the fact

that (UT (Acu+1, . . . , Am), β̃) = (UT (Acu+1, . . . , Am), α̃) yields us

IdG(B
[cu+1,m]) = IdG(A

[cu+1,m]).

Therefore, by applying Lemma 1.2.5, we have

IdG(A) = IdG(A
[1,c1])IdG(A

[c1+1,c2]) · · · IdG(A
[cu+1,m])

= IdG(B
[1,c1])IdG(B

[c1+1,c2]) · · · IdG(B
[cu+1,m]) ⊆ IdG(B),

a contradiction with Proposition 4.1.4 (here h = 1G and η = ϵ). Then, we conclude that IdG(A)

is indecomposable and the proof of the theorem is complete.

We remark that if (B, β) is a finite dimensional G-simple algebra, then B is G-regular

if, and only if, Hβ = G (see Corollary 3.3.3). Thus given m ≥ 2, and considering an m-

tuple (A1, . . . , Am) of finite dimensional G-simple algebras, if H(1)
α̃ H(m)

α̃ ̸= G, where A =

(UT (A1, . . . , Am), α̃), then A1 and Am are both non-G-regular G-simple algebras. However,

in general the converse may not be valid. In the sequel, if p is a prime number, we will obtain

that, for p-groups, the condition H(1)
α̃ H(m)

α̃ ̸= G is equivalent to requiring that A1 and Am are

both non-G-regular G-simple algebras.
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Theorem 4.2.3. Let G = ⟨ϵ⟩ be a cyclic p-group, where p is a prime number. Assume that

m ≥ 2 and A = (UT (A1, . . . , Am), α̃). The following statements are equivalent:

(i) H(1)
α̃ H(m)

α̃ ̸= G;

(ii) A1 and Am are both non-G-regular G-simple algebras;

(iii) The TG-ideal of A is indecomposable.

Proof. First, the implication of item (i) to (ii) is trivial, since if A1 or Am is G-regular then,

by Corollary 3.3.3, H(1)
α̃ = G or H(m)

α̃ = G, which is contrary to the fact that H(1)
α̃ H(m)

α̃ ̸= G.

In order to prove the converse, assume that statement (ii) holds, with H(i)
α̃ = ⟨ϵci⟩, for

i ∈ [1,m], and suppose, by contradiction, that H(1)
α̃ H(m)

α̃ = G. Thus ϵ ∈ H(1)
α̃ H(m)

α̃ , and we can

write

ϵ = (ϵc1)l1(ϵcm)lm ,

for some integers l1, lm. Since A1 and Am are both non-G-regular G-simple algebras, it follows

that H(1)
α̃ ̸= G and H(m)

α̃ ̸= G, and then p divides c1 and cm. From the above equality, one

has that p divides (c1l1 + cmmm − 1), and consequently p divides 1, an absurd. Therefore, we

conclude that statements (i) and (ii) are equivalents.

We remark that Proposition 4.2.2 guarantees that (i) implies (iii). Thus, in order to finish

the proof of the theorem, let us show that (iii) implies (ii). For such, it is enough to notice

that if A1 is G-regular, then, by applying Theorem 2.1.5, we have

IdG(A) = IdG(A1)IdG(UTG(A2, . . . , Am)).

Similarly, we concluded if Am is G-regular.

In the sequel, we give a generalization of Theorems 4.6 and 4.9 of [7]. We highlight that its

proof is a direct consequence of Proposition 4.1.5 and Theorems 2.1.5 and 4.2.3.

Theorem 4.2.4. Let G = ⟨ϵ⟩ be a cyclic p-group, where p is a prime number, and consider

an m-tuple (A1, . . . , Am) of finite dimensional G-simple algebras. Let A = UTG(A1, . . . , Am).

Then, either IdG(A) is an indecomposable TG-ideal (related to minimal graded algebras) or

IdG(A) can be written as a product of indecomposable TG-ideals.

More precisely, if there exists at most one index ℓ ∈ [1,m] such that Aℓ is a non-G-regular

G-simple algebra, then

IdG(A) = IdG(A1)IdG(A2) · · · IdG(Am).
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Otherwise, we can set u and v as the first and the last index (with 1 ≤ u < v ≤ m), respectively,

such that Au and Av are non-G-regular G-simple algebras. In this way, the decomposition of

IdG(A) as a product of indecomposable TG-ideals is given by

IdG(A) = IdG(A1) · · · IdG(Au−1)IdG(UTG(Au, . . . , Av))IdG(Av+1) · · · IdG(Am).

As a consequence, we obtain:

Corollary 4.2.5. Let G = ⟨ϵ⟩ be a cyclic p-group, where p is a prime number, and consider

an m-tuple (A1, . . . , Am) of finite dimensional G-simple algebras. Let A = UTG(A1, . . . , Am).

The TG-ideal IdG(A) is factorable if, and only if, there exists at most one index ℓ ∈ [1,m] such

that Aℓ is a non-G-regular G-simple algebra.

4.3 The factorability and the isomorphism

Let A1, . . . , Am be finite dimensional G-simple F -algebras. We start this section by giving a

result which establishes a relation between the invariance subgroups associated to A1, . . . , Am

and the number of non-isomorphic G-gradings on UTG(A1, . . . , Am). Moreover, we present

necessary and sufficient conditions to the factorability of the TG-ideals IdG(UTG(A1, . . . , Am)),

in case G is a cyclic p-group, with p an arbitrary prime. Such statement is one of the main

results of this thesis. Finally, we explore the factorability of IdG(UTG(A1, A2)), where G is not

necessarily a cyclic p-group.

Here, we also consider A := (UT (A1, . . . , Am), α̃) and B := (UT (A1, . . . , Am), β̃) such that

β̃ is α̃-admissible. For each l ∈ [1,m], we assume that (Al, α̃l) and (Al, β̃l) have the following

presentations: P(Al,α̃l) = (rl; (gl1, . . . , glkl)) and P(Al,β̃l)
= (rl; (g̃l1, . . . , g̃lkl)).

Proposition 4.3.1. Let G = ⟨ϵ⟩ be a cyclic group. If H(a)
α̃ H(b)

α̃ ̸= G for some 1 ≤ a < b ≤ m,

then there exists at least an α̃-admissible G-grading β̃ such that A = (UT (A1, . . . , Am), α̃) and

B = (UT (A1, . . . , Am), β̃) are non-isomorphic as G-graded algebras.

Proof. Since H(a)
α̃ H(b)

α̃ ̸= G, for any h, η ∈ G such that h−1η /∈ H(a)
α̃ H(b)

α̃ , let β̃ be the G-grading

defined on UT (A1, . . . , Am) satisfying

β̃a = lh · α̃a and β̃b = lη · α̃b.

By invoking Proposition 4.1.5, it follows that IdG(B) * IdG(A) and IdG(A) * IdG(B).

Consequently, A and B are non-isomorphic as G-graded algebras.

The next lemma gives us an important condition in order to obtain a graded isomorphism

between the algebras A = (UT (A1, . . . , Am), α̃) and B = (UT (A1, . . . , Am), β̃).
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Lemma 4.3.2 (Lemma 3.6 of [31]). Let G = ⟨ϵ⟩ be a cyclic group. If there exists g ∈ G such

that

w
(l)

β̃
(gx) = w

(l)
α̃ (x), for all l ∈ [1,m] and x ∈ G,

then B is graded-isomorphic to A.

Proof. For each l ∈ [1,m], the hypothesis guarantees us that there exists a permutation

θl ∈ Sym(kl) such that

Hrl g̃lθl(i) = Hrlggli, for all i ∈ [1, kl].

Given δ ∈ [1, kl], let us define Bllδ := [(δ − 1)rl + 1, δrl]. Then, for each l ∈ [1,m], there

exists σl ∈ Sym(klrl) such that

σl(Blli) = Bllθl(i), for all i ∈ [1, kl],

and

β̃l(σl(ι)) = gα̃l(ι), for all ι ∈ [1, klrl].

Define the map

Γ : (Mηm , α̃) → (Mηm , β̃)

E
(u,v)
ij 7→ E

(u,v)
σu(i)σv(j)

.

It is easy to verify that Γ is a graded isomorphism which induces a graded isomorphism between

the algebras A and B, as desired.

Now, by dealing with the concept of G-regularity, we have the following result about the

uniqueness of G-gradings on A up to isomorphisms of G-graded algebras.

Proposition 4.3.3 (Proposition 5.7 of [22]). Let G = ⟨ϵ⟩ be a cyclic group. If there exists

at most one index ℓ ∈ [1,m] such that Aℓ is a non-G-regular G-simple algebra, then for all

α̃-admissible G-grading β̃, the corresponding algebra (UT (A1, . . . , Am), β̃) is graded-isomorphic

to A.

Proof. If β̃ is α̃-admissible, we will show that B = (UT (A1, . . . , Am), β̃) is graded-isomorphic

to A = (UT (A1, . . . , Am), α̃).

First, suppose that Al is a G-regular G-simple algebra, for all l ∈ [1,m]. Then, for all

l ∈ [1,m] and x ∈ G, the following equality

w
(l)

β̃
(gx) = w

(l)
α̃ (x)

is valid for any choice of g ∈ G.

Consequently, fixed a such element g ∈ G, the assertion comes from Lemma 4.3.2.
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It remains to study the case in which there exists an unique ℓ ∈ [1,m] such that Aℓ is a

non-G-regular G-simple algebra. In this case, since (Aℓ, β̃ℓ) is graded-isomorphic to (Aℓ, α̃ℓ),

by Proposition 3.2.1 there exists gℓ ∈ G such that

w
(ℓ)

β̃
(gℓx) = w

(ℓ)
α̃ (x), for all x ∈ G.

Therefore, once Al is G-regular, for all l ∈ [1,m], with l ̸= ℓ, we obtain that

w
(l)

β̃
(gℓx) = w

(l)
α̃ (x), for all l ∈ [1,m] and x ∈ G.

Then, by considering g := gℓ, by invoking Lemma 4.3.2, we conclude that B is graded-

isomorphic to A.

At this stage, as a consequence of the results presented in this work, we state the gener-

alization of Theorem 4.9 of [7] for the case where G is a finite cyclic p-group, with p being a

prime number.

Theorem 4.3.4 (Theorem 5.8 of [22]). Let p be a prime number and let G = ⟨ϵ⟩ be a cyclic

p-group. Given A = (UT (A1, . . . , Am), α̃), the following statements are equivalent:

(i) The TG-ideal of A is factorable;

(ii) There exists at most one index ℓ ∈ [1,m] such that Aℓ is a non-G-regular G-simple algebra;

(iii) For all α̃-admissible G-grading β̃, the algebra (UT (A1, . . . , Am), β̃) is graded-isomorphic

to A.

Proof. From Corollary 4.2.5 one has the equivalence of (i) and (ii). Moreover, Proposition

4.3.3 guarantees that item (ii) implies (iii).

In order to prove that (iii) implies (ii), notice that if there exist indices 1 ≤ a < b ≤ m such

that the G-simple algebras Aa and Ab are both non-G-regular, then by Corollary 3.3.3 we have

H(a)
α̃ ̸= G ̸= H(b)

α̃ . Since G is a cyclic p-group, as in the proof of Theorem 4.2.3, it follows that

H(a)
α̃ H(b)

α̃ ̸= G. Then, Proposition 4.3.1 guarantees that there exist at least an α̃-admissible G-

grading β̃, such that the corresponding algebra (UT (A1, . . . , Am), β̃) is not graded-isomorphic

to A.

In the sequel, we examine the case when m = 2, and (Ai, α̃i) is α̃i-regular for all i ∈ [1, 2]. In

this situation, we can characterize the factoring property for IdG(A) removing the hypothesis

that G is a cyclic p-group.

Theorem 4.3.5 (Theorem 5.9 of [22]). Let G = ⟨ϵ⟩ be a cyclic group and A = (UT (A1, A2), α̃).

If (Ai, α̃i) is α̃i-regular, for all i ∈ [1, 2], then the following statements are equivalent:
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(i) The TG-ideal IdG(A) is factorable;

(ii) H(1)
α̃ H(2)

α̃ = G;

(iii) For all α̃-admissible G-grading β̃, the algebra (UT (A1, A2), β̃) is graded-isomorphic to A.

Proof. First, by invoking Proposition 4.1.6, it follows that items (i) and (ii) are equivalent.

Now, assume that statement (ii) holds and let B = (UT (A1, A2), β̃) such that β̃ is α̃-admissible.

Let us prove that B is graded-isomorphic to A and, hence, we obtain item (iii).

Since (Ai, α̃i) is α̃i-regular, for all i ∈ [1, 2], one has, from Proposition 3.3.4, that (Ai, β̃i) is

β̃i-regular, for all i ∈ [1, 2]. Thus, by applying Proposition 3.2.1 and Theorem 3.3.2, it follows

that there exist elements gα̃1 , gβ̃1
, gα̃2 , gβ̃2

∈ G such that, for each i ∈ [1, 2], Iα̃i
= gα̃i

H(i)
α̃ and

Iβ̃i
= gβ̃i

H(i)

β̃
, still H(i)

α̃ = H(i)

β̃
. Suppose, without loss of generality, that gα̃1 = gβ̃1

= 1G.

From Proposition 3.3.4, for any elements ḡ1 ∈ H(1)
α̃ and ḡ2 ∈ gβ̃2

H(2)
α̃ g−1

α̃2
, we have, for each

i ∈ [1, 2], w
(i)

β̃
(ḡig) = w

(i)
α̃ (g), for all g ∈ G. Since H(1)

α̃ H(2)
α̃ = G, there exist h1 ∈ H(1)

α̃ , h2 ∈ H(2)
α̃

such that gβ̃2
g−1
α̃2

= h1h2 and thus

h1 = gβ̃2
h−1
2 g−1

α̃2
∈ H(1)

α̃ ∩ gβ̃2
H(2)

α̃ g−1
α̃2
.

Therefore, it follows that w
(l)

β̃
(h1g) = w

(l)
α̃ (g), for all l ∈ [1, 2] and g ∈ G. Finally, such equality

yields that B is graded-isomorphic to A (see Lemma 4.3.2).

Conversely, if item (iii) is valid, then, by Proposition 4.3.1, one has that H(1)
α̃ H(2)

α̃ = G.

We finish this section by remarking that if G is not a p-group, then Theorem 4.3.4 is not

valid. More precisely, items (i) and (iii) of Theorem 4.3.4 may not be equivalent to item (ii).

Indeed, assume, for instance, that G = C6, a cyclic group of order 6. Let A1 = (D2, α̃1) and

A2 = (D3, α̃2), where

(α̃1(1), α̃1(2)) = (1G, ϵ
3) and (α̃2(1), α̃2(2), α̃2(3)) = (1G, ϵ

2, ϵ4).

Moreover, consider A = (UT (A1, A2), α̃).

It is easy to verify that

Iα̃1 = H(1)
α̃ = ⟨ϵ3⟩ and Iα̃2 = H(2)

α̃ = ⟨ϵ2⟩.

This means that the G-simple algebras (Ai, α̃i) are α̃i-regular, but not G-regular, for all i ∈ [1, 2]

(see Theorem 3.3.2 and Corollary 3.3.3). Finally, once H(1)
α̃ H(2)

α̃ = G, by invoking Theorem

4.3.5, one has that the TG-ideal IdG(A) is factorable and for all α̃-admissible G-grading β̃, the

algebra (UT (A1, A2), β̃) is graded-isomorphic to A.
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Chapter 5

Minimal varieties and the algebras

UTCn(A1, . . . , Am)

Throughout this chapter, F will denote an algebraically closed field of characteristic zero.

Moreover, we consider ϵ a primitive nth root of the unity in F ∗ and G = ⟨ϵ⟩ = Cn, the cyclic

group generated by ϵ. We dedicate the last chapter of this thesis to studying the minimal

varieties of G-graded PI-algebras of finite basic rank, with respect to a given G-exponent. We

will show that they are generated by suitable G-graded upper block triangular matrix algebras.

Moreover, given finite dimensional G-simple F -algebras A1, . . . , Am, let A := UTG(A1, . . . , Am).

By imposing some conditions on A, we will prove that, in this case, varG(A) is minimal. The

new results established in this chapter count with the collaboration of Professor Viviane Ribeiro

Tomaz da Silva and are in the paper [31] submitted for publication.

5.1 Minimal Cn-graded algebras and minimal varieties

In this section, we will prove that any minimal variety of G-graded PI-algebras of finite basic

rank, of a given G-exponent, is generated by a suitable G-graded upper block triangular matrix

algebra. To this end, we fix an m-tuple (A1, . . . , Am) of finite dimensional G-simple F -algebras

and we consider the G-graded upper block triangular matrix algebra A := (UT (A1, . . . , Am), α̃)

(as in Section 4.1). Let us start proving that A is a minimal G-graded algebra.

Proposition 5.1.1 (Proposition 4.3 of [31]). Let G = ⟨ϵ⟩ be a cyclic group. The G-graded

upper block triangular matrix algebra A = (UT (A1, . . . , Am), α̃) is a minimal G-graded algebra,

whose lth G-simple component of its maximal semisimple graded subalgebra is isomorphic to

(Mkl(Drl), α̃l).

Proof. If m = 1, then A is a G-simple algebra and we are done.
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Suppose m ≥ 2. In this case, for each l ∈ [1,m], it is enough to take the minimal homoge-

nenous idempotents as

el := (e11 ⊗ E0)(l,l) = E
(l,l)

11 = E
(l,l)
11 + · · ·+ E(l,l)

rlrl

and, for each l ∈ [1,m− 1], take the homogeneous radical elements as

wl,l+1 := E
(l,l+1)
11 .

Let A = Ass + J(A) be a minimal G-graded algebra, where its maximal semisimple subal-

gebra Ass = A1 ⊕ · · · ⊕Am, with A1, . . . , Am being G-simple algebras, and J(A), the Jacobson

radical of A, is a graded ideal. For each i ∈ [1,m], there exist positive integers ki and ri such

that Ai is graded-isomorphic to a graded subalgebra of Mkiri , endowed with an elementary

grading given by a suitable map α̃i : [1, kiri] → G (see Theorem 3.1.3).

Consider the G-graded upper block triangular matrix algebra (UT (A1, . . . , Am), α̃). By

using the same notations for the homogeneous radical elements, which appear in Definition

1.5.2, define the map

α̃A : [1, ηm] → G

i 7→ |w12w23 · · ·wl−1,l|Aα̃l(1)
−1α̃(i),

where l ∈ [1,m] is the unique integer such that i ∈ Bll and |w01|A := 1G.

In the sequel, we shall assume that UT (A1, . . . , Am) is endowed with the grading induced

by the map α̃A. In this case, let us denote such graded algebra by (UT (A1, . . . , Am), α̃A), where

the index A emphasizes that the grading on UT (A1, . . . , Am) depends of that of A.

Definition 5.1.2. The G-graded algebra (UT (A1, . . . , Am), α̃A) is said to be the upper block

triangular matrix algebra related to the minimal G-graded algebra A = A1 ⊕ · · · ⊕ Am + J(A).

Now, we can state the following result which relates the varieties generated by a minimal

G-graded algebra A = A1 ⊕ · · · ⊕ Am + J(A) and by (UT (A1, . . . , Am), α̃A).

Proposition 5.1.3 (Proposition 4.8 of [31]). Let G = ⟨ϵ⟩ be a cyclic group and A = Ass+J(A)

be a minimal G-graded algebra such that Ass = A1 ⊕ · · · ⊕ Am. Then (UT (A1, . . . , Am), α̃A)

belongs to varG(A). In particular, if varG(A) is minimal, then

varG(A) = varG((UT (A1, . . . , Am), α̃A)).

Proof. First, we write A := (UT (A1, . . . , Am), α̃A). In order to conclude the result it is enough

to show that IdG(A) ⊆ IdG(A). To this end, let us apply the process of induction on m.
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If m = 1, then A = UT (A1) is graded-isomorphic to A1 = A and we are done.

Assume that m ≥ 2 and suppose that, for every d ∈ [0,m − 1], one has IdG(A
[1,d]) ⊆

IdG(A[1,d]) (remember that the algebras A[1,d] and A[1,d] were defined in Section 1.5). In this

case, let us to prove that the inclusion F ⟨X;G⟩\IdG(A) ⊆ F ⟨X;G⟩\IdG(A) is valid. Take

a polynomial f = f(xg11 , . . . , x
gp
p ) ∈ F ⟨X;G⟩\IdG(A). Since charF = 0 we can assume that

f is multilinear. Moreover, there exist elements b1, . . . , bp, in the canonical basis of A, with

|bi|A = gi, for all i ∈ [1, p], such that f(b1, . . . , bp) ̸= 0A.

Considere ℓ := |{i | bi ∈ J(A), i ∈ [1, p]}|. The fact that J(A) is a nilpotent ideal of index

m− 1, yields us ℓ ≤ m− 1.

First, let us study when ℓ < m − 1. In this case, there exists i ∈ [1,m − 1] such that, for

every j ∈ [i+ 1,m], follows that bl /∈ Ai,j, for all l ∈ [1, p].

Notice that, if there exists q ∈ [1, p] such that bq ∈ Au,i, for some u ∈ [1, i], thus the elements

b1, . . . , bp are in ⊕
1≤u≤v≤i

Au,v
∼= UT (A1 . . . , Ai)

with the induced G-graded. Otherwise, the elements b1, . . . , bp are in⊕
1≤u≤v≤m

u ̸=i̸=v

Au,v
∼= UT (A1 . . . , Ai−1, Ai+1, . . . , Am)

with the induced G-graded. Hence, either

f /∈ IdG(UT (A1 . . . , Ai)) or f /∈ IdG(UT (A1 . . . , Ai−1, Ai+1, . . . , Am)).

In both cases, once the G-graded algebras UT (A1 . . . , Ai) and UT (A1 . . . , Ai−1, Ai+1, . . . , Am)

are related, respectively, to the graded subalgebras A[1,i] and A(̌i) of A (see the notation intro-

duced in Section 1.5), we conclude, by the induction hypotheses, that f ∈ F ⟨X;G⟩\IdG(A), as

desired.

Now, assume that ℓ = m− 1. Then there exist t1, . . . , tm−1 ∈ [1, p] such that

bt1 = E
(1,2)
i1j2

, . . . , btm−1 = E
(m−1,m)
im−1jm

,

where il ∈ [1, klrl] and jl+1 ∈ [1, kl+1rl+1], for all l ∈ [1,m− 1], and all the elements of the set

{b1, . . . , bp}\{bt1 , . . . , btm−1} are in the diagonal blocks of A. Since f is multilinear, by invoking

Lemma 4.1.2, one has that

f(b1, . . . , bp) = γE
(1,m)
ij

for some i ∈ [1, k1r1], j ∈ [1, kmrm] and γ ∈ F ∗. Assume, without loss of generality, that
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b := b1 · · · bp = E
(1,m)
ij . Still, by setting j1 := i and im := j, let us consider b0 := E

(1,1)

1j1
and

bp+1 := E
(m,m)

im1 . Thus, by denoting t0 := 0 and tm := p+ 1, it follows that

btl−1+1 · · · btl−1 = E
(l,l)

jlil
, for all l ∈ [1,m],

and

b0f(b1, . . . , bp)bp+1 = E
(1,1)

1i (γE
(1,m)
ij )E

(m,m)

j1 = γE
(1,m)
11 .

At this point, for each l ∈ [1,m − 1], consider vl ∈ Al and zl+1 ∈ Al+1 the elements

corresponding to E
(l,l)

il1
and E

(l+1,l+1)

1jl+1
in the graded isomorphisms Al

∼= Al,l and Al+1
∼= Al+1,l+1,

respectively (see Proposition 5.1.1). Define

atl := vlwl,l+1zl+1,

where wl,l+1 is the lth homogeneous radical element of A. Then, it follows that, for each

l ∈ [1,m− 1],

|atl|A = |vl|A|wl,l+1|A|zl+1|A = |E(l,l)

il1
|A|E(l,l+1)

11 |A|E
(l+1,l+1)

1jl+1
|A = |E(l,l+1)

iljl+1
|A = |btl|A.

Thus, one has that bi ∈ Al,l, for all i ∈ [tl−1 + 1, tl − 1]. Similarly to what was done above, let

us consider ai ∈ Al,l to be the element corresponding to bi ∈ Al,l, z1 := a0 corresponding to b0

in A1,1 and vm := ap+1 corresponding to bp+1 in Am,m.

Now, we remark that, for all π ∈ Sym(p), it is valid

a0aπ(1) · · · aπ(p)ap+1 ̸= 0A if, and only if, bπ(1) · · · bπ(p) ̸= 0A.

Indeed, let us suppose first that a0aπ(1) · · · aπ(p)ap+1 ̸= 0A. In this case, π(tl) = tl, for all

l ∈ [1,m− 1]; and, for each l′ ∈ [1,m], if tl′−1 < l < tl′ , then tl′−1 < π(l) < tl′ . Therefore

0A ̸= a0aπ(1) · · · aπ(p)ap+1 = z1aπ(1) · · · aπ(p)vm
= z1aπ(1) · · · aπ(t1−1)at1aπ(t1+1) · · · aπ(t2−1)at2 · · · atm−1aπ(tm−1+1) · · · aπ(p)vm
= z1aπ(1) · · · aπ(t1−1)v1w12z2aπ(t1+1) · · · aπ(t2−1)v2w23z3 · · · vm−1wm−1,mzmaπ(tm−1+1) · · · aπ(p)vm.

Such fact implies the following equivalent statements:

(i) zlaπ(tl−1+1) · · · aπ(tl−1)vl ̸= 0A, for all l ∈ [1,m];

(ii) E
(l,l)

1jl
bπ(tl−1+1) · · · bπ(tl−1)E

(l,l)

il1
̸= 0A, for all l ∈ [1,m];
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(iii) bπ(tl−1+1) · · · bπ(tl−1) = E
(l,l)

jlil
, for all l ∈ [1,m];

(iv) E
(1,1)

1j1
bπ(1) · · · bπ(t1−1)E

(1,2)
i1j2

· · ·E(m−1,m)
im−1jm

bπ(tm−1+1) · · · bπ(p)E
(m,m)

im1 = E
(1,m)
11 ;

(v) bπ(1) · · · bπ(p) ̸= 0A.

Reciprocally, if bπ(1) · · · bπ(p) ̸= 0A, thus by using the above statements (i) − (v), it follows

that zlaπ(tl−1+1) · · · aπ(tl−1)vl ̸= 0A, for all l ∈ [1,m]. Once, from Proposition 5.1.1, for each

l ∈ [1,m], the minimal homogeneous idempotent el ∈ Al corresponds to E
(l,l)

11 , we have that the

product zlaπ(tl−1+1) · · · aπ(tl−1)vl coincides with el, for all l ∈ [1,m]. Hence

a0aπ(1) · · · aπ(p)ap+1 = z1aπ(1) · · · aπ(p)vm = e1w12e2 · · · em−1wm−1,mem = w12 · · ·wm−1,m ̸= 0A,

as desired.

Therefore, by applying the previous claim, we can conclude that a0f(a1, . . . , ap)ap+1 ̸= 0A,

and this implies in f ∈ F ⟨X;G⟩\IdG(A). Then, in case ℓ = m − 1, we conclude also that

A ∈ varG(A).

Finally, the fact that expG(A) = expG(A) guarantees us varG(A) = varG(A), in case varG(A)

is minimal, and the proof is completed.

We finish this section by presenting the following important result:

Theorem 5.1.4 (Theorem 4.9 of [31]). Let G = ⟨ϵ⟩ be a cyclic group and VG be a variety of

G-graded PI-algebras of finite basic rank. If VG is minimal of G-exponent d, then it is generated

by a G-graded upper block triangular matrix algebra UTG(A1, . . . , Am) such that dimF (A1⊕· · ·⊕
Am) = d.

Proof. It is enough to apply Theorem 1.5.6 and Proposition 5.1.3.

5.2 Kemer polynomials for the algebras UTCn(A1, . . . , Am)

The so-called Kemer polynomials, seen in Section 1.3, are important tools in the solution

of many problems of PI-theory. Fixed an m-tuple (A1, . . . , Am) of finite dimensional G-simple

F -algebras, let us consider A := UTG(A1, . . . , Am) (as in Section 4.1). In this section, our main

aim is constructing such Kemer polynomials for the G-graded algebra A.

First, in order to simplify the notation, for each l ∈ [1,m] and g ∈ G, let us define

dAl := dimFAl, dAl,g := dimF (Al)g and dAss,g := dimF (Ass)g =
∑

l∈[1,m]

dAl,g.
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At this moment, we presented some preliminary constructions involving the product of the

canonical basis elements of A.

Assume that m = 1. In this case, A is a G-simple algebra and, by invoking Theorem 3.1.3,

A is graded-isomorphic to Mk(Dr) ⊆Mkr.

We consider, firstly, the case r = 1, that is, A ∼=G Mk. We remark that it is possible to

write the canonical element e11 from a product of the k2 distinct canonical basis elements of

A of the form eij. Fixed a such product, we shall refer to it as the standard total product (of

basis elements) of A.

Now, assume that r ≥ 2. For each t ∈ [0, r − 1], we obtain a product of all the k2 distinct

basis elements of A of the form eij⊗Et resulting in e11⊗(Et)k
2
, where the elements eij compose

the standard total product of Mk. Realizing this same process for all t ∈ [0, r − 1], we obtain

the following product from all the rk2 distinct canonical basis elements of A:

Πt∈[0,r−1](e11 ⊗ (Et)k
2

) = e11 ⊗ (E
∑

t∈[0,r−1] t)k
2

=

{
e11 ⊗ Er/2 if r is even and k is odd,

e11 ⊗ E0 otherwise.

We also refer to this product as the standard total product (of basis elements) of A. Moreover,

we can write e11 ⊗ Er/2 = E1, r
2
+1 and e11 ⊗ E0 = E11.

Now, let us define a suitable monomial of F ⟨X;G⟩, where all its variables are distinct,

constructed in a such way that each element appearing in the standard total product of A is

replaced by a variable of XG of the same degree. We denote such monomial by mA. Observe

that mA has rk2 variables. If we evaluate in mA the same canonical basis elements of A which

were used for its construction, then we say that such an evaluation is standard total and we

denote it by mA.

For any ι ≥ m ≥ 1 and l ∈ [1,m], consider ι copies of mAl
in pairwise disjoint sets of graded

variables. For each i ∈ [1, ι], denote by m
(i)
Al

the ith copy of mAl
. Moreover, we denote by S(l, i)

the set of the variables of m
(i)
Al

and by S(l, i, g) the set of the variables of degree g in S(l, i).

Observe that S(l, i) = ∪g∈GS(l, i, g) and

|S(l, i)| = dAl and |S(l, i, g)| = dAl,g.

For all i ∈ [1, ι] and g ∈ G, define T (i, g) := ∪l∈[1,m]S(l, i, g) and, thus, it follows that

|T (i, g)| =
∑

l∈[1,m]

dAl,g = dAss,g.

72



We observe that

m
(1)
Al

· · ·m(ι)
Al

=

{
E

(l,l)

1,
rl
2
+1 if rl is even and kl and ι are both odd,

E
(l,l)

11 otherwise.

In first case we shall say that (l, ι, rl) is an exception.

Now, for each j ∈ [1,m− 1], take the homogeneous radical element E
(j,j+1)
rj
2
+1,1

of A if (j, ι, rj)

is an exception, and E
(j,j+1)
11 , otherwise. Let us denote the homogeneous degree of such radical

element by gj. Now, consider a variable zj with degree gj such that the set (∪i∈[1,ι],l∈[1,m]S(l, i))∪
(∪j∈[1,m−1]{zj}) is formed by elements which are all distinct. Define Zj := T (j, gj) ∪ {zj} and,

clearly, |Zj| = dAss,gj + 1. Still, setting

πA,ι := m
(1)
A1

· · ·m(ι)
A1
z1m

(1)
A2

· · ·m(ι)
A2
z2 · · · zm−1m

(1)
Am

· · ·m(ι)
Am
,

it is easy to observe that there exists a graded evaluation of πA,ι by canonical basis elements of

A, giving E
(1,m)

1, rm
2

+1 if (m, ι, rm) is an exception, and E
(1,m)
11 , otherwise.

Consider the monomial π̃A,ι obtained from πA,ι by putting ι(dimFAss)+m pairwise different

variables of degree 1G, which do not appear in πA,ι, bordering each variable of πA,ι.

For each l ∈ [1,m] and i ∈ [1, ι], define Y (l, i) to be the set of all the variables which were

placed on the left of the variables of the set S(l, i), and consider ỹl the variable placed on the

right of the monomial m
(ι)
Al
. Finally, for each l ∈ [1,m], define Yl := ∪i∈[1,ι]Y (l, i)∪{ỹl}, and for

each j ∈ [1,m− 1] we alternate in the monomial π̃A,ι the variables of the set Zj and, for each

i ∈ [m, ι] and g ∈ G, those of T (i, g), respectively.

When we finish this process, let us denote by fA,ι the graded polynomial obtained and we

will call it the Kemer polynomial for A. Actually, we will show that fA,ι is not a graded identity

for A = UTG(A1, . . . , Am) and thus G− Par(A), defined in Section 1.3, is a Kemer point of A

and, hence, is the unique Kemer point of A by Corollary 1.3.7.

Lemma 5.2.1 (Lemma 5.1 of [31]). Let G = ⟨ϵ⟩ be a cyclic group and A = UTG(A1, . . . , Am).

For every ι ≥ m the graded polynomial fA,ι is not a G-graded polynomial identity for the

G-graded algebra A.

Proof. First, for all l ∈ [1,m] e i ∈ [1, ι], let us consider the standard total evaluation S(l, i)

of the monomial m
(i)
Al

in A.

We remark that, for each variable v
(i)
a ∈ S(l, i), it is valid v(i)a = (epq ⊗ Et)(l,l), for some

p, q ∈ [1, kl] and t ∈ [0, rl − 1]. Thus, evaluate the variable y
(i)
a ∈ Y (l, i), appearing on the left
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of v
(i)
a , by (epp ⊗ E0)(l,l). Since the evaluation y

(i)
1 v

(i)
1 · · · y(i)

dAl
v
(i)

dAl
is equal to

{
(e11 ⊗ E

rl
2 )(l,l) = E

(l,l)

1,
rl
2
+1 if rl is even and kl is odd,

(e11 ⊗ E0)(l,l) = E
(l,l)

11 otherwise,

we evaluate the variable ỹl by E
(l,l)
rl
2
+1,

rl
2
+1, if rl is even and kl is odd, and by E

(l,l)

11 , otherwise.

Notice that E
(l,l)
rl
2
+1,

rl
2
+1 = E

(l,l)

11 = (e11 ⊗ E0)(l,l). Finally, for all j ∈ [1,m − 1], consider zj =

E
(j,j+1)
11 , if (j, ι, rj) is not an exception, and zj = E

(j,j+1)
rj
2
+1,1

, otherwise. Therefore, we have an

evaluation of π̃A,ι in A being:{
E

(1,m)
11 if (m, ι, rm) is not an exception,

E
(1,m)

1, rm
2

+1 otherwise.

Denote such evaluation by SA.

Given i ∈ [m, ι] and g ∈ G, consider a permutation σ of the variables of π̃A,ι which possibly

moves only the variables of T (i, g). It is valid that, if the evaluation of the monomial σ(π̃A,ι) in

A by SA is non-zero, then σ is the identity permutation. In fact, we notice first that aa′ = 0A

for all a ∈ Al and a
′ ∈ Al′ , with l ̸= l′, and z1, . . . , zm−1 are not moved by σ. Hence, σ permutes

only the variables of the set S(l, i, g), for each l ∈ [1,m]. Still, σ does not move the variables

of Yl. In other words, in each monomial of fA,ι the variables of the set Yl appear in the same

order. This implies that, once we have fixed, by the above choice, the elements in Y l, then, by

using the fact that the evaluation of the monomial σ(π̃A,ι) in A by SA is non-zero, it follows

that the evaluation v(i)a is uniquely determined by such choice of elements in Y l, as well the

homogeneous degree of v
(i)
a . Consequently, this discussion guarantees us that σ is the identity

permutation.

Moreover, given j ∈ [1,m − 1], we can argue analogously and obtain also that, if ν is a

non-trivial permutation of the variables of Zj in π̃A,ι, then the evaluation ν(π̃A,ι) by SA is zero.

Consequently, π̃A,ι is the unique monomial of fA,ι which is non-zero under the evaluation by

SA, and this implies that fA,ι /∈ IdG(A), as desired.

5.3 Minimal varieties of Cn-graded PI-algebras

Let VG be a variety of G-graded PI-algebras of finite basic rank. We stated in Theorem

5.1.4 that if VG is minimal of G-exponent d, then VG is generated by a suitable G-graded

algebra UTG(A1, . . . , Am) satisfying dimF (A1 ⊕ · · · ⊕ Am) = d. On the other hand, in this

section, we present some important classes of G-graded upper block triangular matrix algebras
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UTG(A1, . . . , Am) which generate minimal varieties. To this end, fix two tuples (A1, . . . , Am)

and (B1, . . . , Bm′) of finite dimensional G-simple F -algebras and consider

A = UTG(A1, . . . , Am) and B = UTG(B1, . . . , Bm′).

In our first result, we will establish some conditions related to the structures of A and B, in

case expG(B) = dBss ≤ dAss = expG(A).

Lemma 5.3.1 (Lemma 6.1 of [31]). Let G = ⟨ϵ⟩ be a cyclic group and consider two G-graded

upper block triangular matrix algebras A = UTG(A1, . . . , Am) and B = UTG(B1, . . . , Bm′).

Assume that dBss ≤ dAss and consider ι := m +m′ − 1. If fA,ι is not a G-graded identity for B,

then the following properties hold:

(i) dBss,g = dAss,g, for all g ∈ G;

(ii) m′ = m;

(iii) dBl,g = dAl,g, for all l ∈ [1,m] and g ∈ G.

Proof. By hypothesis, the multilinear graded polynomial fA,ι /∈ IdG(B). Thus we can assume,

without loss of generality, that there exists a non-zero graded evaluation SB, by canonical basis

elements of B, in the monomial π̃A,ι of fA,ι.

It is easy to check that, since J(B) is nilpotent of index m′, there exists ℓ ∈ [m, ι] such that

all the variables of the sets ∪g∈GT (ℓ, g) = ∪l∈[1,m]S(l, ℓ) and ∪l∈[1,m]Y (l, ℓ) are evaluated only

by semisimple elements in SB. Thus, once fA,ι alternates the variables in the set T (ℓ, g), for all

g ∈ G, one has that dAss,g = |T (ℓ, g)| ≤ dBss,g, for all g ∈ G. Then

dAss =
∑
g∈G

dAss,g ≤
∑
g∈G

dBss,g = dBss ≤ dAss,

which implies that dBss,g = dAss,g, for all g ∈ G.

We remark that ∪g∈GT (ℓ, g) = ∪l∈[1.m]S(l, ℓ) is an evaluation of the product m
(ℓ)
A1

· · ·m(ℓ)
Am

which involves all, and only, the canonical basis elements of Bss and each one of this elements

exactly once. Thus, for each l ∈ [1,m], the monomial m
(ℓ)
Al

must be evaluated in a unique block

of Bss = B1 ⊕ · · · ⊕Bm′ . Consequently, we obtain that m′ ≤ m.

Furthermore, by remembering that, for each j ∈ [1,m−1], the polynomial fA,ι alternates in

the set Zj, whose cardinality is dAss,gj +1, by applying item (i) it follows that |Zj| = dAss,gj +1 =

dBss,gj + 1. This implies that we must have at least m − 1 canonical basis elements of J(B) in

SB. Since J(B) is nilpotent of index m′, we have m− 1 < m′ and thus m ≤ m′. By combining

such inequality with m′ ≤ m we conclude that m′ = m.
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At this stage, we notice that, for all l ∈ [1,m], the monomial m
(ℓ)
Al

must be necessarily

evaluated in Bl. Thus, the fact that S(l, ℓ) is a total evaluation of m
(ℓ)
Al
, by canonical basis

elements of Bl, allows us to conclude that, for all g ∈ G, the number of variables in m
(ℓ)
Al

of degree g coincides with the number of canonical basis elements in Bl of degree g, that is,

dBl,g = dAl,g, for all l ∈ [1,m] and g ∈ G. Hence the proof of the lemma is completed.

As a consequence, we have the following:

Proposition 5.3.2 (Proposition 6.2 of [31]). Let G = ⟨ϵ⟩. Consider the G-graded upper block

triangular matrix algebras A = (UT (A1, . . . , Am), α̃) and B = (UT (B1, . . . , Bm′), β̃) such that

expG(B) = expG(A).

If IdG(B) ⊆ IdG(A), then m′ = m and dBl = dAl , for all l ∈ [1,m]. Moreover, IdG(Bl) ⊆
IdG(Al), for all l ∈ [1,m], and, consequently, (Bl, β̃l) is graded-isomorphic to (Al, α̃l), for all

l ∈ [1,m].

Proof. Since IdG(B) ⊆ IdG(A), it follows, by applying Lemma 5.2.1, that fA,ι /∈ IdG(B), for

all ι ≥ m. Thus, taking ι := m + m′ − 1, once dBss = expG(B) = expG(A) = dAss, by Lemma

5.3.1, one has that

m′ = m and dBl,g = dAl,g, for all l ∈ [1,m] and g ∈ G,

which implies

dBl = dAl , for all l ∈ [1,m].

Now, if m = 1, then the inclusion IdG(B1) ⊆ IdG(A1) it is clear.

Assume that m ≥ 2. Consider the graded subalgebras A[1,m−1] and B[1,m−1] of the G-graded

algebras A and B, respectively. We claim that IdG(B
[1,m−1]) ⊆ IdG(A

[1,m−1]). Indeed, let us

suppose that there exists a polynomial

f1 ∈ IdG(B
[1,m−1]) \ IdG(A

[1,m−1]).

Consider the Kemer polynomial fA[m−1,m],2, whose variables can be assumed to be pairwise

disjoint from those involved in f1. By invoking Lemma 5.2.1, it follows that

fA[m−1,m],2 /∈ IdG(A
[m−1,m]).

Moreover, it is valid that

dA
[m−1,m]

ss = dAm−1 + dAm = dBm−1 + dBm > dBm = dBm
ss ,
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which allows us to conclude, in virtue of Lemma 5.3.1, that

fA[m−1,m],2 ∈ IdG(Bm).

Now, by considering new graded variables xg, for each g ∈ G, and setting

f̃ := f1

(∑
g∈G

xg

)
fA[m−1,m],2,

we obtain that f̃ /∈ IdG(A). On the other hand, we have that

f̃ ∈ IdG(B
[1,m−1])IdG(Bm) ⊆ IdG(B).

By combining the above inclusion with the fact that IdG(B) ⊆ IdG(A), we get a contradiction.

Similarly, we conclude that IdG(B
[2,m]) ⊆ IdG(A

[2,m]). In this way, by applying the above

same arguments, we obtain that

IdG(B
[l,l′]) ⊆ IdG(A

[l,l′]), for all 1 ≤ l ≤ l′ ≤ m, (5.1)

and this implies that IdG(Bl) ⊆ IdG(Al), for all l ∈ [1,m], as desired.

The final part follows in virtue of Theorem 3.2.2, once dBl = dAl , for all l ∈ [1,m].

Example 5.3.3. Considere G = C4 = ⟨ϵ⟩, a cyclic group of order 4, and let A1 = (D2, α̃1) and

A2 = (D2, α̃2), where

(α̃1(1), α̃1(2)) = (α̃2(1), α̃2(2)) = (1G, ϵ
2).

Moreover, consider A = (UT (A1, A2), α̃).

It is easy to verify that

H(1)
α̃ = H(2)

α̃ = ⟨ϵ2⟩

and this impliesH(1)
α̃ H(2)

α̃ ̸= G. Then, by Theorem 4.2.3, one has that IdG(A) is indecomposable.

We claim that varG(A) can not be generated by a finite dimensional G-simple algebra.

Indeed, let us suppose that there exists a finite dimensional G-simple algebra A′ such that

varG(A) = varG(A
′). Hence, we have IdG(A) = IdG(A

′) and expG(A) = expG(A
′). Therefore,

since A = (UT (A1, A2), α̃) and A
′ is a G-simple algebra, we obtain a contradiction from Lemma

5.3.1.

At light of Proposition 5.3.2, given two tuples (A1, . . . , Am) and (B1, . . . , Bm) of finite di-
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mensional G-simple F -algebras, in our next results, we will always assume that

A := (UT (A1, . . . , Am), α̃) and B := (UT (B1, . . . , Bm), β̃)

are such that

expG(B) = expG(A) and IdG(B) ⊆ IdG(A). (5.2)

Hence, by invoking also Proposition 3.2.1, for each l ∈ [1,m], (Bl, β̃l) = (Mkl(Drl), β̃l) is graded-

isomorphic to (Al, α̃l) = (Mkl(Drl), α̃l) and H(l)

β̃
= H(l)

α̃ . Still, let us assume that (Al, α̃l) and

(Bl, β̃l) have the following presentations:

P(Al,α̃l) = (rl; (gl1, . . . , glkl)) and P(Bl,β̃l)
= (rl; (g̃l1, . . . , g̃lkl)).

We remark that, in particular, B is graded-isomorphic to A in case m = 1. In the next

result, we will show that if m = 2, then the above graded algebras B and A are also graded-

isomorphic. To this end, the main strategy is guaranteeing that there exists g ∈ G such that

w
(l)

β̃
(gx) = w

(l)
α̃ (x), for all l ∈ [1,m] and x ∈ G (see Lemma 4.3.2).

Proposition 5.3.4 (Proposition 6.3 of [31]). Let G = ⟨ϵ⟩ be a cyclic group. Consider the

G-graded upper block triangular matrix algebras

A = (UT (A1, A2), α̃) and B = (UT (B1, B2), β̃)

satisfying expG(B) = expG(A) and IdG(B) ⊆ IdG(A). Then B is graded-isomorphic to A.

Proof. First, let us suppose, without loss of generality, that

wα1⊙ϵ̃r1
(g11) = max{wα1⊙ϵ̃r1

(h) | h ∈ Iα1⊙ϵ̃r1
} and wα2⊙ϵ̃r2

(g21) = max{wα2⊙ϵ̃r2
(h) | h ∈ Iα2⊙ϵ̃r2

}.

Set t12 := 1 + k21 + k22. In virtue of Lemma 4.1.3, there exists an evaluation of the

polynomial Capt12(x1, . . . , xt12 ;xt12+1, . . . , x2t12+1) in the algebra UT (A1, A2), at its canoni-

cal basis elements, resulting in E1,η1+1. Let us consider the multilinear graded polynomial

Capt12(u1, . . . , ut12 ; ut12+1, . . . , u2t12+1) built in a such way that each homogeneous variable ui

has the degree, induced by α̃, of the canonical basis elements used in the above evaluation.

Then Capt12(u1, . . . , ut12 ; ut12+1, . . . , u2t12+1) has a graded evaluation in the algebra A equal to

E
(1,2)
11 = E1,η1+1. Since

|E(1,2)
11 |A = |E1,η1+1|A = α̃(1)−1α̃(η1 + 1) = g−1

11 g21,

one has that Capt12(u1, . . . , ut12 ;ut12+1, . . . , u2t12+1) has homogeneous degree equal to g−1
11 g21 as
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an element of F ⟨X;G⟩.

Thus, by item (i) of Lemma 3.2.3, there exist homogeneous multilinear polynomials ΨA1

and ΨA2 , in pairwise disjoint sets of homogeneous variables (and also distinct from those of the

set {u1, . . . , u2t12+1}), with evaluations ρ1 : F ⟨X;G⟩ → A and ρ2 : F ⟨X;G⟩ → A, such that

ρ1(ΨA1) = (e11 ⊗ E0)(1,1) = E
(1,1)

11

and

ρ2(ΨA2) = (e11 ⊗ E0)(2,2) = E
(2,2)

11 .

In this way, by setting

f := ΨA1Capt12(u1, . . . , ut12 ;ut12+1, . . . , u2t12+1)ΨA2 ,

we get that f has homogeneous degree equal to g−1
11 g21 as an element of F ⟨X;G⟩ and f /∈ IdG(A).

At this stage, notice that the hypothesis IdG(B) ⊆ IdG(A) yields that f /∈ IdG(B). Any

non-zero graded evaluation of the polynomial Capt12(u1, . . . , ut12 ; ut12+1, . . . , u2t12+1) in B must

give elements of J(B). Hence, the homogeneous multilinear polynomials ΨA1 e ΨA2 must be

evaluated, respectively, in B1 and B2.

Now, from Proposition 5.3.2 and Corollary 3.2.2, it follows that, for each l ∈ [1, 2], there

exists an element ḡl ∈ G such that

w
(l)

β̃
(ḡlx) = w

(l)
α̃ (x), for all x ∈ G. (5.3)

In this situation, we consider the new graded algebra B′ = (UT (B′
1, B

′
2), β̃

′) such that B′
l = Bl

and β̃′
l := lḡl · α̃l, for all l ∈ [1, 2]. We remark that w

(l)

β̃′ (x) = w
(l)

β̃
(x), for all l ∈ [1, 2] and x ∈ G,

and by Lemma 4.3.2 it follows that B′ is graded-isomorphic to B. Thus, in the sequel, we may

assume that B = B′, that is,

β̃l = lḡl · α̃l, for all l ∈ [1, 2].

Then, if ρ1 and ρ2 are graded evaluations, respectively, of ΨA1 and ΨA2 in, respectively, B1 and

B2 (with the grading induced by β̃), from Remark 3.2.4, such evaluations satisfy

ρ1(ΨA1) ∈
⊕

i∈TA1
; g1i ∈H(1)

β̃
g11

(B1)
(ḡ1g1i)
1G

and ρ2(ΨA2) ∈
⊕

j∈TA2
; g2j∈H

(2)

β̃
g21

(B2)
(ḡ2g2j)
1G

.

In particular, the evaluation of ΨA1 results in linear combinations of basis canonical elements
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(eu1v1 ⊗ Ea1−b1)(1,1) ∈ ((B1)
(ḡ1g1i)
1G

, β̃1 = β1 ⊙ ϵ̃r1) such that

β1(u1) = ḡ1(ϵ
s1)a1g1i and β1(v1) = ḡ1(ϵ

s1)b1g1i, for some a1, b1 ∈ [0, r1 − 1],

and once g1i ∈ H(1)

β̃
g11, we have

β1(u1) = ḡ1(ϵ
s1)a1h1ig11 and β1(v1) = ḡ1(ϵ

s1)b1h1ig11, for some h1i ∈ H(1)

β̃
;

whereas, one has that, the evaluation of ΨA2 results in linear combinations of basis canonical

elements (eu2v2 ⊗ Ea2−b2)(2,2) ∈ ((B2)
(ḡ2g2j)
1G

, β̃2 = β2 ⊙ ϵ̃r2) such that

β2(u2) = ḡ2(ϵ
s2)a2h2jg21 and β2(v2) = ḡ2(ϵ

s2)b2h2jg21, for some h2j ∈ H(2)

β̃
,

with c, d ∈ [0, r2 − 1].

Thus, from the above discussions, once f /∈ IdG(B) and its homogeneous degree, as an

element of F ⟨X;G⟩, is g−1
11 g21, it follows that there exist l1 ∈ [0, r1 − 1] and l2 ∈ [0, r2 − 1] such

that

g−1
11 g21 = β̃((u1−1)r1+l1+1)−1β̃((v2−1)r2+l2+1) = (ḡ1(ϵ

s1)a1h1ig11(ϵ
s1)l1)−1ḡ2(ϵ

s2)b2h2jg21(ϵ
s2)l2 .

Hence

ḡ1(ϵ
s1)a1+l1h1i = ḡ2(ϵ

s2)b2+l2h2j.

Define g := ḡ1(ϵ
s1)a1+l1h1i = ḡ2(ϵ

s2)b2+l2h2j. By using that ⟨ϵs1⟩ ⊆ H(1)

β̃
, ⟨ϵs2⟩ ⊆ H(2)

β̃
and (5.3),

it is easy to verify that

w
(l)

β̃
(gx) = w

(l)
α̃ (x), for all l ∈ [1, 2] and x ∈ G,

and, consequently, B is graded-isomorphic to A (see Lemma 4.3.2).

At this stage, we present a new important condition in order to obtain a graded isomorphism

between A and B.

Proposition 5.3.5 (Proposition 6.4 of [31]). Let G = ⟨ϵ⟩ be a cyclic group and let A =

(UT (A1, . . . , Am), α̃) and B = (UT (B1, . . . , Bm), β̃) satisfying expG(B) = expG(A) and IdG(B) ⊆
IdG(A).

If there exists ℓ ∈ [1,m] such that

H(ℓ)

β̃
= H(ℓ)

α̃ = {1G},
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then B is graded-isomorphic to A.

Proof. Once expG(B) = expG(A) and IdG(B) ⊆ IdG(A), by Proposition 5.3.2 and Corollary

3.2.2, for each l ∈ [1,m], there exists gl ∈ G such that

w
(l)

β̃
(glx) = w

(l)
α̃ (x), for all x ∈ G.

We claim that

(ḡl)
−1ḡl′ ∈ H(l)

α̃ H(l′)
α̃ , for all 1 ≤ l < l′ ≤ m.

In fact, suppose that there exist 1 ≤ l < l′ ≤ m such that (ḡl)
−1ḡl′ /∈ H(l)

α̃ H(l′)
α̃ . Moreover, let us

assume, without loss of generality, that β̃l = lḡl · α̃l and β̃l′ = lḡl′ · α̃l′ . Thus, from Proposition

4.1.4, one has IdG(B
[l,l′]) * IdG(A

[l,l′]) and IdG(A
[l,l′]) * IdG(B

[l,l′]), a contradiction with what

was established in (5.1).

Now, we remark that if ℓ > 1, then

(ḡl)
−1ḡℓ ∈ H(l)

α̃ H(ℓ)
α̃ = H(l)

α̃ , for all l ∈ [1, ℓ− 1],

whereas if ℓ < m, thus

(ḡℓ)
−1ḡl′ ∈ H(ℓ)

α̃ H(l′)
α̃ = H(l′)

α̃ , for all l′ ∈ [ℓ+ 1,m].

Therefore, for each l ̸= ℓ, there exists hl ∈ H(l)
α̃ = H(l)

β̃
such that ḡl = ḡℓhl. Hence,

w
(l)

β̃
(ḡℓx) = w

(l)
α̃ (x), for all l ∈ [1,m] and x ∈ G,

and, from Lemma 4.3.2, B is graded-isomorphic to A.

We remark that Propositions 5.3.4 and 5.3.5 generalize Theorem 3.3 of [24], where the

authors deal with the G-graded upper block triangular matrix algebras UTG(A1, . . . , Am), with

Ai =Mki , for all i ∈ [1,m].

Now, we will prove that if there exists at most one index ℓ ∈ [1,m] such that Bℓ and Aℓ are

non-G-regular G-simple algebras, then B is graded-isomorphic to A.

Proposition 5.3.6 (Proposition 6.5 of [31]). Let G = ⟨ϵ⟩. Consider the G-graded upper block

triangular matrix algebras A = (UT (A1, . . . , Am), α̃) and B = (UT (B1, . . . , Bm), β̃) satisfying

expG(B) = expG(A) and IdG(B) ⊆ IdG(A).

If H(l)

β̃
= H(l)

α̃ = G, for all (except for at most one) l ∈ [1,m], then B is graded-isomorphic

to A.
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Proof. The result follows by applying Corollary 3.3.3 and Proposition 4.3.3.

Note that as a consequence of Propositions 5.3.5 and 5.3.6, in order to have that B ∼=G A,

in addition to (5.2), it is enough to require that the invariance subgroups H(l)

β̃
and H(l)

α̃ are {1G}
or G (not all necessarily the same), for all l ∈ [1,m]. In particular, if G = Cp, with p being a

prime number, thus we have that B is graded-isomorphic to A. Such case was developed by Di

Vincenzo, da Silva and Spinelli, in [17].

Finally, we are in position to announce the main result of this section. It represents our

contribution to the study of the minimal varieties of associative G-graded PI-algebras, of finite

basic rank, with respect to a given G-exponent, when G is a finite cyclic group. More precisely,

we exhibit some important conditions, related to the structure of A = (UT (A1, . . . , Am), α̃)

and the invariance subgroups H(l)
α̃ , which are sufficient to concluding that varG(A) is minimal.

We remark that, in view of the diversity of the possibilities for the invariance subgroups

when we work with arbitrary finite cyclic groups (which are not of prime order), determining

if varG(A) is minimal or not is an engaging problem that still remains open. Nevertheless, the

next theorem completely solves such problem for instance in the following cases:

• A has two blocks;

• all (except for at most one) the G-simple components of A are G-regular;

• G = Cp, with p being a prime number (in this case, see also [17]).

Theorem 5.3.7 (Theorem 6.6 of [31]). Let F be an algebraically closed field of characteristic

zero and G = ⟨ϵ⟩ be a cyclic group, with ϵ being a primitive nth root of the unity in F ∗. Given

finite dimensional G-simple F -algebras A1, . . . , Am, let A := (UT (A1, . . . , Am), α̃). Assume

that at least one of the following properties hold:

(i) m = 1 or 2;

(ii) there exists ℓ ∈ [1,m] such that H(ℓ)
α̃ = {1G};

(iii) H(l)
α̃ = G, for all (except for at most one) l ∈ [1,m].

Then varG(A) is minimal with expG(A) = dimF (A1 ⊕ · · · ⊕ Am).

Proof. In order to conclude that varG(A) is minimal, take a subvariety UG ⊆ varG(A) such

that expG(UG) = expG(varG(A)).

First, the fact that varG(A) satisfies some Capelli identities (see Lemma 4.1.3) allows us to

state, from Section 7.1 of [5], that UG has finite basic rank. As consequence, by Theorem 1.1

of [5], one has that UG is generated by a finite dimensional G-graded algebra Ā.
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Now, we notice that, in virtue of Lemma 1.5.5, there exists a minimal G-graded algebra Ã

such that IdG(Ā) ⊆ IdG(Ã) and expG(Ã) = expG(Ā). In particular, by invoking Proposition

5.1.3, it follows that there exists a G-graded algebra B := (UT (B1, . . . , Bm′), β̃) such that

IdG(Ã) ⊆ IdG(B) and expG(B) = expG(Ã). Consequently,

IdG(A) ⊆ IdG(B) and expG(A) = expG(B).

Therefore, in this situation, Propositions 5.3.2 and 3.2.1 give us that m′ = m and H(l)

β̃
= H(l)

α̃ ,

for all l ∈ [1,m]. Then, if one of statements (i) − (iii) it is valid, Propositions 5.3.4 to 5.3.6

guarantee us that B is graded-isomorphic to A. Hence, IdG(A) = IdG(B) and thus we obtain

that varG(A) is minimal.

We finish this chapter by highlighting that the results obtained in this section contribute to

the isomorphism problem when associated with the theory of the G-graded PI-algebras. More

precisely, given finite dimensional G-simple F -algebras A1, . . . , Am, we have that any G-graded

upper block triangular matrix algebras UTG(A1, . . . , Am) satisfying conditions (i) − (iii) of

Theorem 5.3.7 are graded-isomorphic if, and only if, the TG-ideal of their G-graded polynomial

identities is the same.
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Final Considerations

Throughout this thesis, we have addressed several important topics of PI-theory. In par-

ticular, in case F is an algebraically closed field of characteristic zero and G = Cn = ⟨ϵ⟩ is a

finite cyclic group of order n, we explored the G-graded upper block triangular matrix algebras

UTG(A1, . . . , Am) and the TG-ideal IdG(UTG(A1, . . . , Am)) of its G-graded polynomial identi-

ties, when A1, . . . , Am are finite dimensional G-simple F -algebras. Regarding this study, the

first and crucial step realized was the description of the finite dimensional G-simple F -algebras

as graded subalgebras of matrix algebras endowed with some elementary gradings.

Moreover, if the cyclic group G is a p-group, with p being an arbitrary prime number,

we investigated the factoring problem related to the TG-ideal IdG(UTG(A1, . . . , Am)), by es-

tablishing necessary and sufficient conditions in order to have that IdG(UTG(A1, . . . , Am)) =

IdG(A1) · · · IdG(Am).More precisely, we proved that IdG(UTG(A1, . . . , Am)) is factorable if, and

only if, there exists at most one index ℓ ∈ [1,m] such that Aℓ is a non-G-regular G-simple alge-

bra if, and only if, there exists a unique isomorphism class of G-gradings for UTG(A1, . . . , Am).

As previously seen throughout the text, the invariance subgroups related to the finite dimen-

sionalG-simple algebras A1, . . . , Am played an essential role in obtaining the above equivalences.

It is worth saying that these statements were published in [22] together with some new results

and alternative proofs from those presented in this thesis. In the sequel, in order to explicite

some of these differences, let us recall some definitions and notations.

Firstly, given a finite dimensional G-simple F -algebra (Mk(Dr), α ⊙ ϵ̃r) endowed with an

elementary grading, we recall that α : [1, k] → G is the map which induces the elementary

grading on the matrix algebra Mk. Moreover, by remembering that Hr = ⟨ϵs⟩, with r · s = n,

we consider the map α : [1, k] → G/Hr as

α(i) = Hrα(i), for all i ∈ [1, k].

It turns out that the G/Hr-graded matrix algebra (Mk, α) has important and useful connec-

tions with the G-graded algebra (Mk(Dr), α⊙ϵ̃r). We start by comparing the graded multilinear
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polynomial identities of (Mk, α) and (Mk(Dr), α⊙ ϵ̃r). To this end, given any graded multilinear

polynomial

f(x1, x2, . . . , xm) =
∑

σ∈Sym(m)

cσxσ(1)xσ(2) · · · xσ(m) of F ⟨X;G⟩, with cσ ∈ F,

let us define in the free G/Hr-graded algebra F ⟨Ẋ;G/Hr⟩ the following graded polynomial

fHr(ẋ1, ẋ2, . . . , ẋm) =
∑

σ∈Sym(m)

cσẋσ(1)ẋσ(2) · · · ẋσ(m),

where |ẋi|F ⟨Ẋ;G/Hr⟩ = Hr|xi|F ⟨X;G⟩, for all i ∈ [1,m].

In the next statement, we enunciate the nice relation, obtained in [22], between the graded

ideals IdG(Mk(Dr), α⊙ ϵ̃r) and IdG/Hr(Mk, α).

Proposition 1 (Proposition 4.6 of [22]). Let G = ⟨ϵ⟩ be a cyclic group and let f and f be graded

multilinear polynomials in the free algebras F ⟨Ẋ;G/Hr⟩ and F ⟨X;G⟩, respectively, such that

fHr = f . Then

f ∈ IdG(Mk(Dr), α⊙ ϵ̃r) ⇐⇒ f ∈ IdG/Hr(Mk, α).

Therefore, at light of the above result, investigating theG/Hr-graded multilinear polynomial

identities of the matrix algebra (Mk, α) allows us to obtain information about the elements of

the TG-ideal of G-graded polynomial identities of (Mk(Dr), α ⊙ ϵ̃r). In this sense, with the

appropriate adaptations, we prove Lemma 3.2.3 in [22] by working with the matrix algebra

(Mk, α) and by invoking results given by Di Vincenzo and Spinelli, in [24], where the authors

deal with matrix algebras endowed with elementary gradings.

In addition, we remark that, while in this thesis we prove some of the results directly for the

finite dimensional G-simple F -algebras Mk(Dr), in the paper [22] we chose to prove suitable

results only for the matrix algebras (Mk, α) and, once done, we work with the algebras Mk(Dr)

(by dealing with (Mk, α)).

It is worth highlighting another interesting bridge between the G-simple algebras (Mk, α)

and (Mk(Dr), α ⊙ ϵ̃r), which explores the regularity of these algebras and was crucial for our

aims.

Theorem 1 (Proposition 4.7 of [22]). Let G = ⟨ϵ⟩ be a cyclic group. The G-graded algebra

(Mk(Dr), α⊙ ϵ̃r) is (α⊙ ϵ̃r)-regular if, and only if, (Mk, α) is α-regular.

Now, we would like to point out some remarks and results about the minimal varieties

of associative G-graded PI-algebras over F , of finite basic rank, of a given G-exponent. We

recall that such subject was approached in Chapter 5. There we showed that these varieties
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are generated by suitable G-graded upper block triangular matrix algebras. On the other

hand, given finite dimensional G-simple F -algebras A1, . . . , Am, we considered the G-graded

upper block triangular matrix algebra UTG(A1, . . . , Am). By imposing some extras conditions

on UTG(A1, . . . , Am), we proved that, in this case, varG(UTG(A1, . . . , Am)) is minimal. More

precisely, if UTG(A1, . . . , Am) satisfies at least one the following conditions:

(i) m = 1 or 2;

(ii) there exists ℓ ∈ {1, . . . ,m} such that the invariance subgroup related to the G-simple

algebra Aℓ is {1G};

(iii) the invariance subgroups related to the G-simple algebras A1, . . . , Am are all (except for

at most one) equal to G,

then it is valid that UTG(A1, . . . , Am) generates a minimal variety.

It is worth remembering that, in order to achieve the above results, we proved first that any

two G-graded upper block triangular matrix algebras endowed with elementary gradings, sat-

isfying one of the above conditions, are graded-isomorphic if, and only if, they satisfy the same

G-graded polynomial identities. Moreover, we emphasize that when we deal with a finite cyclic

group G (which is not of order p, with p prime), obtaining that the varG(UTG(A1, . . . , Am)) is

or not minimal, for any G-graded upper block triangular matrix algebra UTG(A1, . . . , Am), it

is an engaging problem, which is still open. In this case, our results indicate that the behavior

of the invariance subgroups related to the finite dimensional G-simple algebras A1, . . . , Am is a

crucial and important point in solving a such problem.

Since the factorability and the minimal varieties were the main topics addressed in this

thesis, we would like to end by asking us what connections can be obtained between these

concepts from our results. In this sense, we highlight the case G is a cyclic p-group, with

p being a prime number. We remark that if the TG-ideal IdG(UTG(A1, . . . , Am)) decomposes

into IdG(UTG(A1, . . . , Am)) = IdG(A1) · · · IdG(Am), then, from Theorem 4.3.4, there exists a

unique isomorphism class of G-gradings for UTG(A1, . . . , Am). Consequently, in this situation,

we conclude that the factorability of IdG(UTG(A1, . . . , Am)) is a sufficient condition in order to

have that varG(UTG(A1, . . . , Am)) is minimal.

On the other hand, the reciprocal is not true. Indeed, for instance when G is a group of

prime order, any varG(UTG(A1, . . . , Am)) is minimal (see [17] or items (ii) and (iii) above).

However, whenever there exist 1 ≤ a < b ≤ m such that the G-simple algebras Aa and Ab are

both non-G-regular, by invoking Theorem 4.3.4, it follows that IdG(UTG(A1, . . . , Am)) is not

factorable.
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