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Abstract

In this thesis, we present the extension of some classical results of PI-theory to
the class of ∗-superalgebras, that is, superalgebras endowed with a graded involution.
Let V = vargri(A) be a variety generated by a finite dimensional ∗-superalgebra A
over a field F of characteristic zero. Giambruno, dos Santos and Vieira proved in [9]
that the ∗-graded codimension sequence of V is polynomially bounded if, and only
if, V does not contain five ∗-superalgebras: D∗ the commutative algebra D = F ⊕F
endowed with the exchange involution and trivial grading; Dgr the commutative
algebra with grading F (1, 1) ⊕ F (1,−1) and endowed with trivial involution; Dgri

the commutative algebra with non-trivial grading and endowed with the exchange
involution; M∗ and M gri, where M is a suitable 4-dimensional subalgebra of the
algebra of 4×4 upper triangular matrices, endowed with the reflection involution and
with trivial and non-trivial grading, respectively. As a consequence the algebras D∗,
Dgr, Dgri, M∗ and M gri generate the only varieties generated by finite dimensional
∗-superalgebras of almost polynomial growth. We expound here the classification
of all subvarieties of these five varieties of almost polynomial growth, that was
given in [21] and [12] in different contexts. We also exhibit the decompositions
of the ∗-graded cocharacters of all minimal subvarieties of vargri(D∗), var

gri(Dgr),
vargri(Dgri), vargri(M∗) and vargri(M gri) and compute their ∗-graded colengths.
Finally, we classify the varieties generated by finite dimensional ∗-superalgebras
such that their sequence of ∗-graded colengths is bounded by three.

Keywords: Polynomial identity, superalgebra, algebra with involution, codimen-
sion, cocharacter, bounded colength.
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Resumo expandido

Seja F um corpo de caracteŕıstica zero, F 〈X〉 a álgebra associativa livre gerada
por um conjunto enumerável X sobre F e seja A uma álgebra associativa sobre F .
Denotamos por Id(A) ⊆ F 〈X〉 o T -ideal das identidades polinomiais de A. Escreve-
mos V = var(A) para denotar a variedade gerada pela álgebra A e Id(V) = Id(A).
Uma vez que todo T -ideal é um ideal das identidades polinomiais satisfeitas por
uma dada variedade de álgebras, muitas vezes é conveniente traduzir um problema
sobre T -ideais numa linguagem de variedade de álgebras.

Uma maneira efetiva de estudar T -ideais é determinando alguns invariantes
numéricos que podem ser atribúıdos ao T -ideal para dar uma descrição quantitativa.
Um invariante numérico muito útil é a sequência de codimensões. Tal sequência
foi introduzida por Regev em [28] e mede a taxa de crescimento dos polinômios
pertencentes a um T -ideal dado. Regev provou que se A é uma PI-álgebra, isto é,
A satisfaz uma identidade polinomial não nula, então a sequência de codimensões
cn(A), n = 1, 2, . . ., é limitada exponencialmente. Depois, Kemer mostrou que
dada qualquer PI-álgebra A, a sequência de codimensões não pode ter crescimento
intemediário, isto é, ou cresce exponencialmente ou é polinomialmente limitada.
Kemer também provou que a sequência de codimensões é limitada polinomialmente
se, e somente se, a variedade de álgebras gerada por A não contém a álgebra de
Grassmann G de um espaço vetorial de dimensão infinita e não contém a álgebra
UT2(F ) das matrizes triangulares superiores 2 × 2 sobre F . Portanto, var(G) e
var(UT2(F )) são as únicas variedades de crescimento quase polinomial.

O estudo das variedades de crescimento polinomial foi feito extensivamente nos
anos sequintes ([3], [5], [19]). Estes resultados foram extendidos para álgebras com
estruturas adicionais tais como superálgebras, álgebras graduadas por um grupo,
álgebras com involução, involução graduada e superinvolução, permitindo o estudo
das identidades correspondentes ([4], [7], [8], [9], [12], [17], [20], [21]).

Na literatura, nós temos a classificação completa de todas as subvariedades das
variedades de crescimento quase polinomial em diferentes linguagens ( [12], [19],
[20], [21]). Os autores também classificam todas as suas subvariedades minimais de
crescimento polinomial. Recordamos que V é uma variedade minimal de crescimento
polinomial nk se assintoticamente cn(V) ≈ ank, para algum a 6= 0, e cn(U) ≈ bnt,
com t < k, para qualquer subvariedade própria U de V . A relevância das variedades
minimais de crescimento polinomial está no fato de que estas variedades são os
blocos construtores que permitiram aos autores dar um classificação completa das
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subvariedades das variedades de crescimento quase polinomial (veja também [6]).

Outro invariante numérico associado a uma álgebra A é a sequência de cocom-
primentos ln(A) que conta, para cada respresentação, a multiplicidade dada pelo
número de somandos irredut́ıveis na decomposição do cocaracter χn(A), para n ≥ 1.
Um problema interessante envolvendo tal invariante é classificar todas as variedades
de álgebras tais que a sequência de cocomprimentos é limitada por uma constante.
Sabemos que existe uma equivalência entre crescimento polinomial e variedade com
cocomprimento limitado por uma constante no caso de PI-álgebras, superálgebras
e álgebras com involução (ver [24], [27], [30]). Nós ainda não temos um resultado
similar no caso de superálgebras com involução graduada ou no caso de álgebras
com superinvolução.

Também é conhecida a classificação das variedades de álgebras tais que a
sequência de cocomprimentos é limitada por uma constante fixa, em casos pe-
quenos. Por exemplo, em [3] Giambruno e La Mattina classificaram PI-álgebras
com sequência de cocomprimentos limitada por k = 2 e depois La Mattina deu em
[18] tal classificação para k = 4. Em linguagem de superálgebras, Vieira classificou
em [31] todas as supervariedades tais que a sequência de cocomprimentos graduados
é limitada por 2. Recentemente, em um trabalho conjunto com La Mattina e Vieira
(ver [23]), nós classificamos todas as variedades de álgebras com involução tais que
a sequência de cocomprimentos é limitada por 3.

Nesta tese, trabalhamos com superálgebras sobre um corpo de caracteŕıstica
zero munidas de uma involução tal que as componentes homogêneas são invariantes
sob a involução. Mais precisamente, dizemos que uma superálgebra A = A(0)⊕A(1)

munida de uma involução ∗ é uma ∗-superálgebra se (A(0))∗ = A(0) e (A(1))∗ = A(1).
Neste caso, dizemos que ∗ é uma involução graduada.

Consideramos a álgebra D = F ⊕ F e denotamos por D∗ a álgebra comutativa
D com graduação trivial e munida da involução (a, b)∗ = (b, a), chamada involução
troca; Dgr será a álgebra comutativa D com graduação dada por F (1, 1)⊕F (1,−1)
e munida da involução trivial, enquanto Dgri será a álgebra comutativa D com
graduação F (1, 1)⊕ F (1,−1) e munida da involução troca.

Em sequida, definimos M como sendo a seguinte subálgebra de UT4(F )

M =




a c 0 0
0 b 0 0
0 0 b d
0 0 0 a

 |a, b, c, d ∈ F
 .

Denotamos por M∗ a álgebra M com graduação trivial e munida da involução re-
flexão, i.e. a involução obtida através da reflexão da matriz ao longo de sua diagonal
secundária.

Escrevemos M gri para denotar a álgebra M munida com a involução reflexão e
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com graduação dada por


a 0 0 0
0 b 0 0
0 0 b 0
0 0 0 a

 ,


0 c 0 0
0 0 0 0
0 0 0 d
0 0 0 0


 .

Em [9], Giambruno, dos Santos e Vieira provaram que uma ∗-superálgebra de
dimensão finita A tem crescimento polinomial se, e somete se, a variedade gerada por
A não contém as ∗-superálgebrasD∗, D

gr, Dgri, M∗ eM gri. Consequentemente, estas
cinco ∗-superálgebras geram as únicas variedades de crescimento quase polinomial
geradas por ∗-superálgebras de dimensão finita.

O propósito inicial desta tese era classificar as subvariedades das cinco var-
iedades de crescimento quase polinomial geradas por ∗-superálgebras de dimensão
finita e explicitar a decomposição dos cocaracteres ∗-graduados das subvariedades
minimais encontradas. Ao mesmo tempo, Ioppolo e La Mattina classificaram em [12]
as subvariedades das variedades geradas por álgebras de dimensão finita munidas
de uma superinvolução e como crescimento quase polinomial. Como a classificação
deles é uma extensão da nossa, tivemos que avançar um pouco mais. Coletando
os resultados sobre os cocomprimentos ∗-graduados das ∗-superálgebras que geram
subvariedades minimais nas variedades de crescimento quase polinomial, obtemos
uma lista de ∗-superálgebras com cocomprimento ∗-graduado pequeno. O objetivo
principal desta tese é classificar todas as variedades geradas por ∗-superálgebras de
dimensão finita tais que a sequência de cocomprimentos é limitada por 3, apresen-
tando uma lista completa de ∗-superálgebras geradoras de dimensão finita.

Organizamos esta tese em três caṕıtulos dispostos da seguinte maneira.

No Caṕıtulo 1 recordamos brevemente alguns resultados sobre PI-álgebras, su-
perálgebras e álgebras com involução, e apresentamos as principais propriedades
sobre ∗-superálgebras e resultados sobre crescimento polinomial das codimensões
∗-graduadas. Também definimos o principal objeto de estudo desta tese, que é o
cocomprimento ∗-graduado lgrin (A) de uma ∗-superálgebra A, e explicamos como
calculá-lo usando vetores de altura máxima.

No Caṕıtulo 2 apresentamos a classificação das subvariedades das variedades de
crescimento quase polinomial não-comutativas, vargri(M∗) e vargri(M gri). Também
exibimos a decomposição do cocaracter ∗-graduado das subvariedades minimais per-
tencentes às variedades vargri(M∗) e vargri(M gri); e calculamos o cocomprimento
∗-graduado delas.

No Caṕıtulo 3 classificamos as subvariedades das variedades de crescimento
quase polinomial comutativas, vargri(D∗), var

gri(Dgr) e vargri(Dgri), explicitamos a
decomposição do cocaracter ∗-graduado e calculamos o cocomprimento ∗-graduado
das subvariedades minimais pertencente a elas. Finalmente, estudamos outras ∗-
superálgebras com cocomprimento ∗-graduado pequeno para enfim caracterizar to-
das as ∗-superálgebras de dimensão finita que geram variedades com cocomprimento
∗-graduado limitado por 3.
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As principais técnicas utilizadas neste trabalho são métodos da teoria de repre-
sentações do grupo simétrico Sn e o estudo do comportamento assintótico dos graus
de Sn-representações irredut́ıveis. Sugerimos ao leitor os livros [13] e [14] para o es-
tudo de Sn-representações e os livros [1] e [11] para mais informações sobre a teoria
de PI-álgebras.
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1

Introduction

Let F be a field of characteristic zero, F 〈X〉 be the free associative algebra on a
countable set X over F and A be an associative algebra over F . Let Id(A) ⊆ F 〈X〉
denote the T -ideal of polynomial identities of A. We write V = var(A) to denote
the variety generated by the algebra A and Id(V) = Id(A). Since every T -ideal is
an ideal of polynomial identities satisfied by a given variety of algebras, it is often
convenient to translate a given problem on T -ideals into the language of varieties of
algebras.

An effective way to study T -ideals is that of determining some numerical invari-
ants that can be attached to the T -ideal to give a quantitative description. A very
useful numerical invariant is the sequence of codimensions. Such sequence was in-
troduced by Regev in [28] and measures the rate of growth of the polynomials lying
in a given T -ideal. Regev proved that if A is a PI-algebra, that is, satisfies a non-
trivial polynomial identity, then the sequence of codimensions cn(A), n = 1, 2, . . .,
is exponentially bounded. Later, Kemer showed that given any PI-algebra A, the
sequence of codimension cannot have intermediate growth, that is, either grows ex-
ponentially or is polynomially bounded. Kemer also proved that the codimension is
polynomially bounded if, and only if, the variety of algebras generated by A does
not contain the Grassmann algebra G of an infinite dimensional vector space and
also does not contain the algebra UT2(F ) of 2× 2 upper triangular matrices over F .
Hence, var(G) and var(UT2(F )) are the only varieties of almost polynomial growth.

The study of varieties of polynomial growth was extensively made in later years
(e.g., [3], [5], [19]). These results have been extended to algebras with an additional
structure such as superalgebras, group graded algebras, algebras with involution,
graded involution and superinvolution, allowing to study the corresponding identities
(e.g., [4], [7], [8], [9], [12], [17], [20], [21]).

In literature, we have the complete classification of all subvarieties of the varieties
of almost polynomial growth in different languages (e.g. [12], [19], [20], [21]). The
authors also classify all their minimal subvarieties of polynomial growth. We recall
that V is a minimal variety of polynomial growth nk if asymptotically cn(V) ≈ ank,
for some a 6= 0, and cn(U) ≈ bnt, with t < k, for any proper subvariety U of V . The
relevance of the minimal varieties of polynomial growth relies in the fact that these
were the building blocks that allowed the authors to give a complete classification
of the subvarieties of the varieties of almost polynomial growth. (see also [6]).

Another numerical invariant associated to the algebra A is the sequence of



CONTENTS 2

colengths ln(A) counting, for each representation, the multiplicity given by the
number of irreducible summands in the decomposition of the cocharacter χn(A),
for n ≥ 1. One interesting problem involving such invariant is to classify all the va-
rieties of algebras such that the sequence of colengths is bounded by a constant. We
know that there is an equivalence between polynomial growth of codimensions and
varieties with sequence of colength bounded by a constant in case of PI-algebras,
superalgebras and algebras with involution (see [24], [27], [30]). We still don’t have
a similar result in case of superalgebras neither with graded involution nor with
superinvolution.

It is also known the classification of varieties of algebras such that the sequence
of colengths is bounded by a fixed constant in small cases. For example, in [3] Gi-
ambruno and La Mattina classified PI-algebras with sequence of colengths bounded
by k = 2 and later La Mattina, in [18], gave such classification for k = 4. In super-
algebra language, Vieira classified in [31] all supervarieties such that the sequence
of graded colengths is bounded by 2. Recently, in a joint work with La Mattina and
Vieira (see [23]), we classified all the varieties of algebras with involution such that
the sequence of colengths is bounded by 3.

In this thesis, we work with superalgebras over a field of characteristic zero
endowed with an involution such that the homogeneous components are invariant
under the involution. More precisely, we say that a superalgebra A = A(0) ⊕ A(1)

endowed with an involution ∗ is a ∗-superalgebra if (A(0))∗ = A(0) and (A(1))∗ = A(1).
In this case, we say that ∗ is a graded involution.

We consider the algebra D = F ⊕ F and we denote by D∗ the commutative
algebra D with trivial grading and endowed with the involution (a, b)∗ = (b, a),
called exchange involution; Dgr will be the commutative algebra D with the grading
F (1, 1)⊕F (1,−1) and endowed with trivial involution and Dgri will be the commu-
tative algebra D with the grading F (1, 1)⊕F (1,−1) and endowed with the exchange
involution.

Next, we define M to be the following subalgebra of UT4(F )

M =




a c 0 0
0 b 0 0
0 0 b d
0 0 0 a

 |a, b, c, d ∈ F
 .

We denote by M∗ the algebra M with trivial grading and endowed with reflection
involution, i.e. the involution obtained by flipping the matrix along its secondary
diagonal.

We write M gri to denote the algebra M endowed with reflection involution and
with grading given by


a 0 0 0
0 b 0 0
0 0 b 0
0 0 0 a

 ,


0 c 0 0
0 0 0 0
0 0 0 d
0 0 0 0


 .
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In [9], Giambruno, dos Santos and Vieira proved that a finite dimensional ∗-
superalgebra A has polynomial growth if, and only if, the variety generated by A
does not contain the ∗-superalgebras D∗, D

gr, Dgri, M∗ and M gri. As consequence
these five ∗-superalgebras generate the only varieties of almost polynomial growth
generated by finite dimensional ∗-superalgebras.

The initial purpose of this thesis was to classify the subvarieties of the five
varieties of finite dimensional ∗-superalgebras with almost polynomial growth and
to explicit the decomposition of the ∗-graded cocharacter of the minimal subvarieties
found. At the same time, Ioppolo and La Mattina classified in [12] the subvarieties
of the varieties of finite dimensional superalgebras endowed with a superinvolution
and with almost polynomial growth. Since their classification is an extension of ours,
we have to advance a little more. Collecting the results on the ∗-graded colengths
of the ∗-superalgebras that generate minimal subvarieties lying in the varieties of
almost polynomial growth, we obtain a list of ∗-superalgebras with ∗-graded small
colength. The main goal of this thesis is to classify all the varieties generated by
finite dimensional ∗-superalgebras such that the sequence of colengths is bounded
by 3, by giving a complete list of finite dimensional generating ∗-superalgebras.

We organized this thesis in three chapters disposed in the following way.

In Chapter 1 we briefly recall some results about PI-algebras, superalgebras and
algebras with involution and present the principal properties of ∗-superalgebras and
results about the polynomial growth of the ∗-graded codimensions. We also define
the main object of study of this thesis, that is, the ∗-graded colength lgrin (A) of a
∗-superalgebra A, and explain how to calculate it by using highest weight vectors.

In Chapter 2 we present the classification of the subvarieties of the noncommu-
tative varieties of almost polynomial growth, vargri(M∗) and vargri(M gri). We also
exhibit the decomposition of the ∗-graded cocharacter of the minimal subvarieties
lying in vargri(M∗) and vargri(M gri); and compute the ∗-graded colength of them.

In Chapter 3 we classify the subvarieties of the commutative varieties of almost
polynomial growth, vargri(D∗), var

gri(Dgr) and vargri(Dgri), explicit the decompo-
sition of the ∗-graded cocharacter and calculate the ∗-graded colength of the minimal
subvarieties lying in them. Finally, we study other ∗-superalgebras with small ∗-
graded colength in order to characterize all finite dimensional ∗-superalgebras that
generate the varieties of ∗-graded colength bounded by 3.

The main techniques employed in this work are methods of representation theory
of the symmetric group Sn and computations of the asymptotic behavior for the
degrees of the irreducible Sn-representations. We refer to the reader the books [13]
and [14] for the study of Sn-representations, and the books [1] and [11] for more
about the theory of PI-algebras.
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Chapter 1

∗-Superalgebras

In this chapter we briefly present some results about PI-algebras, superalgebras
and algebras with involution. We are more interested in superalgebras over a field of
characteristic zero endowed with involution such that the homogeneous components
are invariant under the involution, called ∗-superalgebras.

Here, we define the free associative ∗-superalgebra and introduce the ∗-graded
polynomial identities on ∗-superalgebras and the ∗-graded codimension sequence.
We define the main objects of study of this thesis which are the ∗-graded cocharacter
and ∗-graded colength sequences of a ∗-superalgebra A.

We also present the classification of the ∗-supervarieties with almost polynomial
growth, in finite dimensional case, given in [9]. The authors proved that there exists
only five ∗-superalgebras under this condition. Such ∗-superalgebras will be useful to
obtain our main goal, which is to classify the ∗-superalgebras with ∗-graded colength
bounded by three.

1.1 PI-algebras, superalgebras and ∗-algebras

Let A be an associative algebra over F , a field of characteristic zero. We consider
F 〈X〉 to be the free associative algebra on X over F , where X = {x1, x2, . . .} is a
countable set of noncommutative variables. We say that a polynomial f(x1, . . . , xn) ∈
F 〈X〉 is an identity of A if f(a1, . . . , an) = 0 for all a1, . . . , an ∈ A and, in this case,
we write f ≡ 0 in A. If A satisfies an non-zero identity, we say that A is a PI-algebra.

We denote by Id(A) = {f ∈ F 〈X〉 |f ≡ 0 on A} the ideal of all identities
satisfied by A. We have that Id(A) is a T -ideal of F 〈X〉, i.e., an ideal invariant
under all endomorphisms of F 〈X〉. In [15], Kemer proved that all T -ideal I is
finitely generated by the set of multilinear polynomials, that is, there exist f1, . . . , fm
multilinear polynomials such that I = 〈f1, . . . , fm〉T , in characteristic zero.

We consider the space Pn of all multilinear polynomials of degree n in x1, . . . , xn
in the free algebra F 〈X〉. Let Sn be the symmetric group of degree n. If σ ∈ Sn, we
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define a natural action on the space Pn as follows: σf(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)).
We have that

Pn(A) :=
Pn

Pn ∩ Id(A)

has a structure of left Sn-module. The dimension of the space Pn(A) is called n-th

codimension of A and is denoted by cn(A) = dimF
Pn

Pn ∩ Id(A)
.

Moreover, let χn(A) denote the character of the Sn-module Pn(A). We have

that its decomposition into irreducible Sn-characters is given by χn(A) =
∑
λ`n

mλχλ

and χn(A) is called the n-th cocharacter of A. We can also define the n-th colength

of A as ln(A) =
∑
λ`n

mλ.

For instance, a commutative algebra is a PI-algebra since [x1, x2] := x1x2−x2x1,
is an identity of A. If A is a nilpotent algebra, such that An = 0, then x1 · · ·xn is
an identity of A.

Let UT2 be the 2 × 2 upper triangular matrix algebra over F . We have that
Id(UT2) = 〈[x1, x2][x3, x4]〉T , and cn(UT2) grows exponentially.

It is well known that any finite dimensional algebra is also a PI-algebra. An im-
portant example of infinite dimensional PI-algebra is the unitary Grassmann algebra
G. We can write

G = 〈1, e1, e2, . . . | eiej = −ejei〉.

Moreover, we have that G can be written as a direct sum of the vector subspaces

G(0) = spanF{ei1 . . . . .ei2k |1 ≤ i1 < . . . < i2k, k ≥ 0} and

G(1) = spanF{ej1 . . . . .ej2p+1|1 ≤ j1 < . . . < j2p+1, p ≥ 0}.

We know that Id(G) = 〈[x1, x2, x3]〉T , and cn(G) also grows exponentially.

For an algebra A, we denote by var(A) the variety of algebras generated by
A, i.e., var(A) = {B|Id(A) ⊆ Id(B)}. We say that the algebras A and B are
T -equivalent if and only if Id(A) = Id(B). In this case, we write A ∼T B.

In [28], Regev proved that if A is a PI-algebra, then the sequence of the codi-
mensions of A is exponentially bounded. In [16], Kemer proved that the sequence
cn(A) is polynomially bounded if, and only if, neither the infinite dimensional Grass-
mann algebra G nor the algebra UT2(F ) of the 2 × 2 upper triangular matrices lie
in var(A).

We recall that an algebra A has almost polynomial growth, if the sequence of
the codimensions of A grows exponentially but the sequence of the codimensions of
any proper subvariety of var(A) is polynomially bounded. Hence G and UT2(F ) are
the only algebras of almost polynomial growth.



CHAPTER 1. ∗-SUPERALGEBRAS 6

If the algebra A has a decomposition A = A(0) ⊕ A(1), where A(0) and A(1)

are subspaces such that A(0)A(0) + A(1)A(1) ⊆ A(0) and A(0)A(1) + A(1)A(0) ⊆ A(1),
then we say that A is a Z2-graded algebra or a superalgebra over F and we write
A =

(
A(0), A(1)

)
.

Let F 〈Y ∪ Z〉 denote the free associative superalgebra, where yi and zi denotes
variables of degree 0 and variables of degree 1, respectively. Let A =

(
A(0), A(1)

)
be a superalgebra over F , a field of characteristic zero. We say that a polynomial
f(y1, . . . , yn, z1, . . . , zm) in the free associative superalgebra F 〈Y ∪ Z〉 is a graded
identity of A, if f(a1, . . . , an, b1, . . . , bm) = 0 for all a1, . . . , an ∈ A(0) and b1, . . . , bm ∈
A(1).

If characteristic of F is equal to zero, the ideal Idgr(A) of the graded identities
satisfied by A is an ideal invariant under all endomorphisms of F 〈Y ∪ Z〉 preserving
the grading and is completely determined by its multilinear polynomials.

We denote by P gr
n the space of multilinear polynomials of degree n in y1, z1, . . . , yn, zn

and if k = (a1, . . . , an;σ) is an element of the hyperoctahedral group Z2 o Sn, we de-
fine a natural action on the space P gr

n as follows: kyi = yσ(i) and kzi = zσ(i) or −zσ(i)

according to whether aσ(i) = 1 or −1, respectively. We consider now the space

P gr
n (A) :=

P gr
n

(P gr
n ∩ Idgr(A))

.

We denote by cgrn (A) = dimF P
gr
n (A) the dimension of Pn(A), and we call this number

of the n-th graded codimensions of A.

Moreover, P gr
n (A) has a Z2 o Sn-modulo structure and its Z2 o Sn-character,

denoted by χgrn (A) is called the n-th graded cocharacter of A. By considering the

decomposition into irreducible Z2 o Sn-characters χgrn (A) =
∑

|λ|+|µ|=n

mλ,µχλ,µ, we can

define the n-th graded colength of A as lgrn (A) =
∑

|λ|+|µ|=n

mλ,µ.

For a superalgebra A, we denote by vargr(A) the variety of superalgebras (or
supervariety) generated by A, and we say that the superalgebras A and B are T2-
equivalent (and we write A ∼T2 B) if, and only if Idgr(A) = Idgr(B).

Any algebra A can be viewed as a superalgebra with trivial grading, that is,
A = A ⊕ {0}. We let UT2 and G denote such algebras with trivial grading. So we
easily see that Idgr(UT2) = 〈[y1, y2][y3, y4], z〉T2 and IdgrG = 〈[y1, y2, y3], z〉T2 .

Now, we consider Ggr = G(0) ⊕ G(1), called the canonical grading of the Grass-
mann algebra, and UT gr2 the algebra UT2 with the grading(

F 0
0 F

)
⊕
(

0 F
0 0

)
.

We also know that Idgr(Ggr) = 〈[y1, y2], [y, z], z1z2 + z2z1〉T2 and Idgr(UT gr2 ) =
〈[y1, y2], z1z2〉T2 .
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Finally, we consider the commutative algebra F⊕cF , where c2 = 1, with grading
(F, cF ). We have Idgr(F ⊕ cF ) = 〈[y1, y2], [y, z], [z1, z2]〉T2 , cgrn (F ⊕ cF ) = 2n and
χgrn (F ⊕ cF ) =

∑n
j=0 χ(n−j),(j).

These five algebras are very useful to characterize superalgebras with sequence
of graded codimension polynomially bounded.

Theorem 1.1.1. [8, Theorem 2] Let V be a variety of superalgebras. Then V has
polynomial growth if and only if G,Ggr, UT2(F ), UT2(F )gr, F⊕cF 6∈ V , where c2 = 1.

As a consequence of this theorem, we have that G,Ggr, UT2(F ), UT2(F )gr and
F⊕cF are the only supervarieties with almost polynomial growth. Their subvarieties
were completely classified by La Mattina, in [19] and [20].

An anti-automorphism ∗ of order at most 2 of an algebra A over F is called
an involution that is, (a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = a∗b∗, (αa)∗ = αa∗,
∀a, b ∈ A,∀α ∈ F . An algebra A endowed with a involution ∗ is called a ∗-algebra.

We have A = A+ ⊕ A− where A+ is the subspace formed by all symmetric
elements, i.e. such that a∗ = a, and A− is the subspace of all skew elements, i.e.
such that a∗ = −a, with a ∈ A.

Let F 〈X, ∗〉 be the free associative algebra with involution on X over F . It
is useful to consider F 〈X, ∗〉 = F 〈Y ∪ Z〉 as generated by symmetric and skew
variables. We say that a polynomial f(y1, . . . , yn, z1, . . . , zm) ∈ F 〈Y ∪ Z〉 is a ∗-
identity of A if f(a1, . . . , an, b1, . . . , bm) = 0 for all a1, . . . , an ∈ A+ and b1, . . . , bm ∈
A−.

The involution case is analogous the Z2-graded case. The ideal Id∗(A) of all ∗-
identities of an F -algebra with involution A is a T ∗-ideal of F 〈Y ∪ Z〉, i.e., an ideal
invariant under all endomorphisms of F 〈Y ∪ Z〉 commuting with the involution ∗,
and is completely determined by its multilinear polynomials.

We consider the space P ∗n of all multilinear polynomials of degree n in y1, z1, . . . ,
yn, zn in the free algebra with involution F 〈Y ∪Z〉. Let Hn be the hyperoctahedral
group of degree n. If k = (a1, . . . , an;σ) is an element of the hyperoctahedral group
Hn, we define a natural action on the space P ∗n as follows: kyi = yσ(i) and kzi = zσ(i)

or −zσ(i) according to whether aσ(i) = 1 or −1, respectively. We have that

P ∗n(A) :=
P ∗n

P ∗n ∩ Id∗(A)

has a structure of left Hn-module. The dimension of the space P ∗n(A) is called the

n-th ∗-codimension of A and is denoted by c∗n(A) = dimF
P ∗n

P ∗n ∩ Id∗(A)
.

By considering χ∗n(A) the character of the Hn-module P ∗n(A), we have that its

decomposition into irreducible Hn-characters is given by χ∗n(A) =
∑

|λ|+|µ|=n

mλ,µχλ,µ
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and χ∗n(A) is called the n-th ∗-cocharacter of A. We can also define the n-th ∗-co-

length of A as l∗n(A) =
∑

|λ|+|µ|=n

mλ,µ.

For a ∗-algebra A we denote by var∗(A) the variety of ∗-algebras (or ∗-variety)
generated by A, i.e. var∗(A) = {B|Id∗(A) ⊆ Id∗(B)}. We say that the ∗-algebras
A and B are T ∗-equivalents if and only if Id∗(A) = Id∗(B). In this case, we write
A ∼T ∗ B.

Notice that if A is a commutative algebra, then the identity map is an involution
of A, and is called the trivial involution.

We consider now the commutative algebra D = F ⊕ F with trivial grading and
exchange involution (a, b)∗ = (b, a). This algebra was presented by Giambruno and
Mishchenko [7]. We know that Id∗(D) = 〈[y1, y2], [y, z], [z1, z2]〉T ∗ , c∗n(D) = 2n and
χ∗n(D) =

∑n
j=0 χ(n−j),(j).

Next, we define M to be the following subalgebra of the algebra UT4(F ) of 4×4
upper triangular matrices:

M =




a b 0 0
0 c 0 0
0 0 c d
0 0 0 a

 : a, b, c, d ∈ F

 .

We consider M endowed with reflection involution, i.e., the involution obtained
by flipping the matrix along its secondary diagonal

a b 0 0
0 c 0 0
0 0 c d
0 0 0 a


∗

=


a d 0 0
0 c 0 0
0 0 c b
0 0 0 a

 .

This ∗-algebra was presented and studied by Mishchenko and Valenti, in [25].

We know that Id∗(M) = 〈z1z2〉T ∗ and if χ∗n(M) =
∑

|λ|+|µ|=n

mλ,µχλ,µ then m(n),∅ = 1,

mλ,µ = q + 1 if


λ = (p+ q, p) and µ = ∅, for all p, q ≥ 0
λ = (p+ q, p, 1) and µ = ∅, for all p ≥ 1, q ≥ 0
λ = (p+ q, p) and µ = (1), for all p ≥ 1, q ≥ 0

and mλ,µ = 0, otherwise. Moreover, the sequence of the ∗-codimensions of M grows
exponentially.

In [7], Giambruno and Mishchenko characterized ∗-algebras whose sequence of
∗-codimensions is polynomially bounded.

Theorem 1.1.2. [7, Theorem 4.7] Let V be a variety of algebras with involution.
Then V has polynomial growth if and only if D,M 6∈ V.
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This proves that D and M are the only ∗-varieties with almost polynomial
growth. The classification of the subvarieties inside them is completely given by La
Mattina and Martino in [21].

Next, we introduce the structure of ∗-superalgebras, and present some results
that generalize what we see here in the context of PI-algebras, superalgebras and
algebras with involution.

1.2 ∗-Superalgebras and the ∗-graded codimen-

sion

Let F be field of characteristic zero and consider A an associative algebra over F .
Remind that an involution on the algebra A is just an antiautomorphism of order at
most 2 on A, which we shall denote by ∗. In this case, we write A+ = {a ∈ A| a∗ = a}
and A− = {a ∈ A| a∗ = −a} for the sets of symmetric and skew elements of A,
respectively.

An involution ∗ on a superalgebra A = A(0) ⊕ A(1) that preserves the homoge-
neous components A(0) and A(1), that is, (A(0))∗ = A(0) and (A(1))∗ = A(1), is called
graded involution. A superalgebra A endowed with a graded involution ∗ is called
∗-superalgebra.

We remind that if A = (A(0)⊕A(1)) is a superalgebra, then ϕ ∈ Aut(A) defined
by ϕ(a0 + a1) = a0 − a1, where a0 ∈ A(0), a1 ∈ A(1), is an automorphism of order at
most 2. Moreover, any automorphism ϕ ∈ Aut(A) of order at most 2 determines a
Z2-grading on A by setting A(0) = {a+ ϕ(a)|a ∈ A} and A(1) = {a− ϕ(a)|a ∈ A}.

The connection between the superstructure and the involution on A is given in
the next lemma. The demonstration was made by R. B. dos Santos in his doctoral
thesis and we will omit here.

Lemma 1.2.1. Let A be a superalgebra over a field F of characteristic different
from 2 endowed with an involution ∗ and ϕ the automorphism of order at most 2
determined by the superstructure. Then A is a ∗-superalgebra if and only if ∗ ◦ ϕ =
ϕ ◦ ∗.

As a consequence of this lemma, if A is a superalgebra over a field F of char-
acteristic different from 2 endowed with an involution ∗, then A is a ∗-superalgebra
if, and only if, the subspaces A+ and A− are graded subspaces. As a consequence,
any ∗-superalgebra can be written as a sum of 4 subspaces

A = (A(0))+ ⊕ (A(1))+ ⊕ (A(0))− ⊕ (A(1))−.

Let X be a countable set of noncommutative variables. We write the set X
as the disjoint union of four countable sets X = Y0 ∪ Y1 ∪ Z0 ∪ Z1, where Y0 =
{y1,0, y2,0, . . .}, Y1 = {y1,1, y2,1, . . .}, Z0 = {z1,0, z2,0, . . .} and Z1 = {z1,1, z2,1, . . .}.
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We can define the free ∗-superalgebra F = F 〈X|Z2, ∗〉 of countable rank on X by
giving a superstructure on F where we require that the variables of Y0 ∪ Z0 are
homogeneous of degree 0 and those of Y1∪Z1 are homogeneous of degree 1. We also
define an involution on F by requiring that the variables of Y0 ∪ Y1 are symmetric
and those of Z0 ∪ Z1 are skew.

Consider F (0) to be the span of all monomials in the variables of X which have
an even number of variables of degree 1 and F (1) to be the span of all monomials
in the variables of X which have an odd number of variables of degree 1. Then
(F (0))∗ = F (0) and (F (1))∗ = F (1) and so F = F (0) ⊕ F (1) has a structure of
∗-superalgebra. The elements of F are called (Z2, ∗)-polynomials.

Let

f = f(y1,0, . . . , ym,0, y1,1, . . . , yn,1, z1,0, . . . , zp,0, z1,1, . . . , zq,1) ∈ F .

We say that f is a (Z2, ∗)-identity for the ∗-superalgebra A, and we write f ≡ 0 on
A, if

f(a+
1,0, . . . , a

+
m,0, a

+
1,1, . . . , a

+
n,1, a

−
1,0, . . . , a

−
p,0, a

−
1,1, . . . , a

−
q,1) = 0,

for all a+
1,0, . . . , a

+
m,0 ∈ (A(0))+, a+

1,1, . . . , a
+
n,1 ∈ (A(1))+, a−1,0, . . . , a

−
p,0 ∈ (A(0))− and

a−1,1, . . . , a
−
q,1 ∈ (A(1))−.

It is clear that any algebra with involution ∗ endowed with trivial grading is a
∗-superalgebra. Also, notice that for a commutative superalgebra A, the identity
map is a graded involution on A.

The ideal of (Z2, ∗)-identities of A is the set

Idgri(A) = {f ∈ F|f ≡ 0 on A}

and we can notice that Idgri(A) is a T ∗2 -ideal of F , i.e. an ideal invariant under
all endomorphisms of F that preserves the superstructure and commutes with the
involution.

Since char(F ) = 0, Idgri(A) is determined by its multilinear polynomials and so
we define

P gri
n = spanF{wσ(1) · · ·wσ(n)|σ ∈ Sn, wi = yi,gi or wi = zi,gi , gi = 0, 1},

the space of multilinear polynomials in the first n variables. As in the ordinary case,
Idgri(A) is finitely generated as a T ∗2 -ideal and we use the notation 〈f1, . . . , fm〉T ∗2
to indicate that Idgri(A) is generated, as a T ∗2 -ideal, by f1, . . . , fm ∈ F .

The dimension of the quotient space

P gri
n (A) :=

P gri
n

Idgri(A) ∩ P gri
n

is called the n-th ∗-graded codimension of A and it is denoted by cgrin (A).



CHAPTER 1. ∗-SUPERALGEBRAS 11

Given a ∗-superalgebra A, we shall denote by vargri(A) the variety of ∗-super-
algebras generated by A, that is, vargri(A) is the class of all ∗-superalgebras B
such that Idgri(A) ⊆ Idgri(B). Consequently, vargri(A) = vargri(B) if, and only if
Idgri(A) = Idgri(B). In this case, we say that A is T ∗2 -equivalent to B and we denote
by A ∼T ∗2 B.

We say that a ∗-superalgebra A has polynomial growth, if there exist constants
α, t such that cgrin (A) ≤ αnt, for all n ≥ 1. If there exists a constant β such that
cgrin (A) ≈ βn, for all n ≥ 1, then we say that cgrin (A) grows exponentially. Moreover,
if V is a variety generated by the ∗-superalgebra A, then we write cgrin (V) = cgrin (A)
and the growth of V is the growth of cgrin (V).

If A is a ∗-superalgebra, we can also consider its identities, ∗-identities and
graded identities. Since we can identify in a natural way Pn, P

∗
n and P gr

n with suitable
subspaces of P gri

n , in what follows we shall consider Id(A) ⊆ Id∗(A) ⊆ Idgri(A) and
Id(A) ⊆ Idgr(A) ⊆ Idgri(A). The relation among the corresponding codimensions
is given in the following.

Lemma 1.2.2. [9, Lemma 3.1] Let A be a ∗-superalgebra. Then for any n ≥ 1, we
have

1. cn(A) ≤ c∗n(A) ≤ cgrin (A);

2. cn(A) ≤ cgrn (A) ≤ cgrin (A);

3. cgrin (A) ≤ 4ncn(A).

By [28], remind that an algebra A is a PI-algebra if, and only if cn(A) is expo-
nentially bounded. Thus, as an immediate consequence of the previous lemma, we
have the following.

Corollary 1.2.3. [9, Corollary 3.2] Let A be a ∗-superalgebra. Then A is a PI-
algebra if, and only if its sequence of ∗-graded codimensions {cgrin (A)}n≥1 is expo-
nentially bounded.

Moreover, since any finite dimensional algebra A is a PI-algebra we have that if
A is a finite dimensional ∗-superalgebra, then the sequence of ∗-graded codimensions
{cgrin (A)}n≥1 is exponentially bounded.

From now on, we denote by D∗ the algebra D = F ⊕ F with trivial grading
and exchange involution (a, b)∗ = (b, a). We also consider Dgr to be the algebra
D = F ⊕ F with grading D = F (1, 1) ⊕ F (1,−1) and trivial involution. Then, D∗
and Dgr are ∗-superalgebras and we have:

1. Idgri(D∗) = 〈Id∗(D∗), y1,1, z1,1〉T ∗2 and cgrin (D∗) = c∗n(D∗) = 2n;

2. Idgri(Dgr) = 〈Idgr(Dgr), z1,0, z1,1〉T ∗2 and cgrin (Dgr) = cgrn (Dgr) = 2n.
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Now, we consider the ∗-superalgebra Dgri to be the commutative algebra D
with the grading F (1, 1)⊕ F (1,−1) and endowed by the exchange involution.

We say that a polynomial f ∈ P gri
n is a proper ∗-polynomial, if it is a linear

combination of elements of the type

yi1,1 · · · yir,1zj1,0 · · · zjs,0zl1,1 · · · zlt,1w1 · · ·wm

where w1, . . . , wm are left normed Lie commutators in the variables from
Y0 ∪ Z0 ∪ Y1 ∪ Z1. Notice that the symmetric even variables appear only inside
the commutators.

Lemma 1.2.4. We have Idgri(Dgri) = 〈z1,0, y1,1〉T ∗2 and cgrin (Dgri) = 2n, for every
n ≥ 1 .

Proof. Since Dgri is a commutative algebra, ((Dgri)(0))− = 0 and ((Dgri)(1))+ = 0,
we get z1,0, y1,1 ∈ Idgri(Dgri) and Dgri satisfies the commutators [y1,0, y2,0], [z1,1, y1,0]
and [z1,1, z2,1]. Let us consider I = 〈z1,0, y1,1〉T ∗2 , then we have I ⊆ Idgri(Dgri). Let
us check the opposite inclusion.

Let f be a (Z2, ∗)-identity ofDgri. By the standard multilinearization process and
since Dgri is an algebra with 1, we can assume f is a multilinear proper polynomial of
degree t > 0. After reducing the polynomial f modulo I we obtain f = αz1,1 · · · zt,1.
By making the evaluation zi,1 = (1,−1), for all 1 ≤ i ≤ t, we get f = α(1, (−1)t) 6= 0.
But since f ∈ Idgri(Dgri), we must have α = 0 and so Idgri(Dgri) = I.

It also proves that for all t ≥ 1 the polynomial {z1,1 · · · zt,1} is a basis for the
proper polynomial of degree t modulo Idgri(Dgri) and so γgrit (Dgri) = 1, for all t ≥ 0.
Hence,

cgrin (Dgri) =
n∑
j=0

(
n

j

)
= 2n.

Recall that M is the algebra

M =




a b 0 0
0 c 0 0
0 0 c d
0 0 0 a

 |a, b, c, d ∈ F
 .

From now on, we let M∗ be the algebra M with trivial grading and reflection involu-
tion. Then, M∗ is a ∗-superalgebra and we have Idgri(M∗) = 〈Id∗(M∗), y1,1, z1,1〉T ∗2
and cgrin (M∗) grows exponentially.

We denote by M gri the algebra M with the grading


a 0 0 0
0 b 0 0
0 0 b 0
0 0 0 a

 ,


0 c 0 0
0 0 0 0
0 0 0 d
0 0 0 0



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and endowed with the reflection involution. Also, M gri is a ∗-superalgebra and
we have (M (0))+ = M (0), (M (0))− = {0}, (M (1))+ = F (e12 + e34) and (M (1))− =
F (e12 − e34). Notice that z1,0 and x1,1x2,1 are identities of M gri, where xi,1 = yi,1 or
xi,1 = zi,1. Let us denote by I the T ∗2 -ideal generated by the polynomials z1,0 and
x1,1x2,1.

Remark 1.2.5. For any polynomial f ∈ F 〈X|Z2, ∗〉 we have x1,1fx2,1 ∈ I.

Proof. We may clearly assume that f is a monomial of homogeneous degree 0. Since
[x1,1, f ] ∈ F 〈X|,Z2, ∗〉(1), we get

x1,1fx2,1 = [x1,1, f ]x2,1 + fx1,1x2,1 ≡ 0 (mod I).

Theorem 1.2.6. [9, Theorem 6.3] Idgri(M gri) = 〈z1,0, x1,1x2,1〉T ∗2 . Moreover, cgrin (M gri)
grows exponentially.

Proof. Since, by Lemma 1.2.2, c∗n(M∗) ≤ cgrin (M gri) and c∗n(M∗) grows exponen-
tially, we get that cgrin (M gri) grows exponentially. Let I = 〈z1,0, x1,1x2,1〉T ∗2 . By the
discussion above, I ⊆ Idgri(M gri).

We shall prove that if f ∈ Idgri(M gri), then f ≡ 0 (mod I). To this end, we may
clearly assume that f is a multilinear polynomial of degree, say, n. Since [yi,0, yj,0] ∈
I, we have yσ(1),0 · · · yσ(n),0 ≡ y1,0 · · · yn,0 (mod I) for any σ ∈ Sn. Moreover, by
Remark 1.2.5 we have x1,1fx2,1 ∈ I, for any polynomial f ∈ F 〈X|Z2, ∗〉. Then we
get that either f ≡ αy1,0 · · · yn,0 (mod I), for some α ∈ F , or f can be written
(mod I) as a linear combination of monomials of the type

yi1,0 · · · yit,0x1,1yit+1,0 · · · yin−1,0,

where 0 ≤ t ≤ n− 1, i1 < · · · < it and it+1 < · · · < in−1.

In the first case, by making the evaluation yi,0 = 1, for i = 1, . . . , n, we get
α = 0 and so f ∈ I, as wished.

In the second case, write

f ≡
n−1∑
t=0

∑
1≤i1<···<it≤n−1

αi1,...,ityi1,0 · · · yit,0x1,1yit+1,0 · · · yin−1,0 (mod I),

with αi1,...,it ∈ F . If for some i1 < · · · < it, αi1,...,it 6= 0, we make the evaluation
yi1,0 = · · · = yit,0 = e11 + e44, yit+1,0 = · · · = yin−1,0 = e22 + e33 and x1,1 = e12 + e34,
in case x1,1 is symmetric, or x1,1 = e12 − e34, in case x1,1 is skew. It is easily seen
that f evaluates to αi1,...,it(e11 + e44)(e12 ± e34)(e22 + e33) = αi1,...,ite12 (mod I) and
αi1,...,it = 0. Thus, f ∈ I and the proof is complete.

The following result allows us to assume F an algebraically closed field, whenever
we are studying the T ∗2 -ideals and the ∗-graded codimensions.
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Lemma 1.2.7. [9, Lemma 8.1] Let F be a field of characteristic zero, F̄ its al-
gebraic closure and A a ∗-superalgebra over F . Then the algebra Ā = A ⊗F F̄
has an induced structure of ∗-superalgebra, (cFn (A))gri = (cF̄n (Ā))gri. Furthermore,
Idgri(A) = Idgri(Ā), viewed as ∗-superalgebras over F .

1.3 The ∗-graded cocharacter and the 〈n〉-cocharacter

The wreath product between Z2 × Z2 and Sn is the group defined by

Hn = (Z2 × Z2) o Sn = {((g1, h1), . . . , (gn, hn);σ)|(gi, hi) ∈ Z2 × Z2, σ ∈ Sn}

with multiplication given by

((g1, h1), . . . , (gn, hn);σ)((a1, b1), . . . , (an, bn); τ) = ((ḡ1, h̄1), . . . , (ḡn, h̄n);στ),

where ḡi = giaσ−1(i) and h̄i = hibσ−1(i), for all 1 ≤ i ≤ n.

We have that Hn acts on P gri
n by the following

((g1, h1), . . . , (gn, hn);σ) · yi,ti = yσ(i),gi+gσ(i)

((g1, h1), . . . , (gn, hn);σ) · zi,ti =

{
zσ(i),gi+gσ(i) , if hσ(i) = 1

−zσ(i),gi+gσ(i) , if hσ(i) = ∗

The cocharacter of the Hn-modulo P gri
n (A) is called the n-th ∗-graded cocharacter

of the ∗-superalgebra A, and it is denoted by χgrin (A).

For an integer number n ≥ 1, we write n = n1 + n2 + n3 + n4 as a sum
of four non-negative integers and write 〈n〉 = (n1, n2, n3, n4). A multipartition
〈λ〉 = (λ(1), . . . , λ(4)) ` 〈n〉 is such that λ(i) = (λ(i)1, λ(i)2, . . .) ` ni, for 1 ≤ i ≤ 4.
Since char(F ) = 0, there exists a one-to-one correspondence between the irreducible
Hn-characters and the multipartitions 〈λ〉 ` 〈n〉.

Hence, we can write the Hn-character of P gri
n as

χgrin (A) =
∑
〈λ〉`〈n〉

m〈λ〉χ〈λ〉,

where χ〈λ〉 is the irreducible Hn-character associated to the multipartition 〈λ〉 and

m〈λ〉 ≥ 0 is the corresponding multiplicity. We denote by lgrin (A) =
∑
〈λ〉`〈n〉

m〈λ〉 the

n-th ∗-graded colength of A.

We define P〈n〉 to be the space of multilinear (Z2, ∗)-polynomials in which the
first n1 variables are symmetric of homogeneous degree 0, the next n2 variables are
symmetric of homogeneous degree 1, the next n3 variables are skew of homogeneous
degree 0 and the next n4 variables are skew of homogeneous degree 1.
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We can notice that for any choice of 〈n〉 = (n1, n2, n3, n4) there are
(
n
〈n〉

)
subspaces isomorphic to P〈n〉 where

(
n
〈n〉

)
=
(

n
n1,n2,n3,n4

)
denotes the multinomial

coefficient and it is clear that P〈n〉 is embedded into P gri
n . Also we have that

P gri
n
∼=
⊕
〈n〉

(
n

〈n〉

)
P〈n〉.

Let us consider P〈n〉(A) :=
P〈n〉

P〈n〉 ∩ Idgri((A))
and c〈n〉(A) = dimF P〈n〉(A). By the

above, it is also clear that

cgrin (A) =
∑
〈n〉

(
n

〈n〉

)
c〈n〉(A). (1.3.1)

Remark 1.3.1. If A and B are ∗-superalgebras, then A⊕B is a ∗-superalgebra and
Idgri(A⊕B) = Idgri(A) ∩ Idgri(B). Furthermore, cgrin (A ⊕ B) ≤ cgrin (A) + cgrin (B)
and the equality holds if and only if

dim
P gri
n

P gri
n ∩ Idgri(A) ∩ Idgri(B)

= dim
P gri
n

P gri
n ∩ Idgri(A)

+ dim
P gri
n

P gri
n ∩ Idgri(B)

.

This is equivalent to say that dimP gri
n = dim(P gri

n ∩ Idgri(A) + P gri
n ∩ Idgri(B)),

and, so, any polynomial in P gri
n can be written as a sum of multilinear polynomials

in Idgri(A) and in Idgri(B).

Similarly c〈n〉(A ⊕ B) = c〈n〉(A) + c〈n〉(B) if, and only if any polynomial in
P〈n〉 can be written as a sum of multilinear polynomials in P〈n〉 ∩ Idgri(A) and
in P〈n〉 ∩ Idgri(B).

According to the construction of the spaces P〈n〉, with 〈n〉 = (n1, n2, n3, n4),
Sn1 ×Sn2 ×Sn3 ×Sn4 acts on P〈n〉 by permuting the respective variables, that is, for
f ∈ P〈n〉 and (σ1, . . . , σ4) ∈ S〈n〉 = Sn1 × Sn2 × Sn3 × Sn4 we have

(σ1, . . . , σ4)f(y1,0, . . . , yn1,0, y1,1, . . . , yn2,1, z1,0, . . . , zn3,0, z1,1, . . . , zn4,1) =

f(yσ1(1),0, . . . , yσ1(n1),0, yσ2(1),1, . . . , yσ2(n2),1, zσ3(1),0, . . . , zσ3(n3),0, zσ4(1),1, . . . , zσ4(n4),1)

and so P〈n〉 is a S〈n〉-module. Since T ∗2 -ideals are invariant under the given action,
we have that P〈n〉(A) also inherits a structure of S〈n〉-module.

It is well known that there exists a one-to-one correspondence between the
irreducible S〈n〉-characters and the multipartitions 〈λ〉 ` 〈n〉. We also know that
the irreducible S〈n〉-characters are the outer tensor product of irreducible characters
of Sn1 , . . . , Sn4 , respectively. Then, we denote by χλ(1) ⊗ · · · ⊗ χλ(4) the irreducible
S〈n〉-character corresponding to 〈λ〉 and by dλ(1) · · · dλ(4) its degree, where dλ(i) is
given by the hook formula d〈λ〉 =

(
n
〈λ〉

)
dλ1dλ2dλ3dλ4 .

By complete reducibility, we can write the character χ〈n〉(A) of P〈n〉(A) as

χ〈n〉(A) =
∑
〈λ〉`〈n〉

m′〈λ〉χλ(1) ⊗ · · · ⊗ χλ(4), (1.3.2)
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where m′〈λ〉 are the corresponding multiplicities. We call χ〈n〉(A) the nth 〈n〉-co-
character of A.

The following result establishes a relation between the ∗-graded cocharacter and
the 〈n〉-cocharacter of a ∗-superalgebra.

Theorem 1.3.2. If P gri
n (A) has Hn-character χgrin (A) =

∑
〈λ〉`〈n〉

m〈λ〉χ〈λ〉 and P〈n〉(A)

has S〈n〉-character χ〈n〉(A) =
∑
〈λ〉`〈n〉

m′〈λ〉χλ(1) ⊗ · · · ⊗ χλ(4), then m〈λ〉 = m′〈λ〉, for

all multipartition 〈λ〉 = (λ(1), λ(2), λ(3), λ(4)) such that λ(i) ` ni, i = 1, 2, 3, 4 and
n = n1 + n2 + n3 + n4.

Now, we consider Fm := Fm〈y1,0, . . . , ym,0, y1,1, . . . , ym,1, z1,0, . . . , zm,0, z1,1, . . . , zm,1〉
and let F n

m := F n
m〈y1,0, . . . , ym,0, y1,1, . . . , ym,1, z1,0, . . . , zm,0, z1,1, . . . , zm,1〉 be the sub-

space of the homogeneous polynomials with degree n ≥ m. Then GLm × GLm ×
GLm × GLm acts diagonally in F n

m, and so F n
m has a GLm × GLm × GLm × GLm-

modulo structure. We also have that F n
m ∩ Idgri(A) is invariant under this action.

Hence, the space

F n
m(A) =

F n
m

F n
m ∩ Idgri(A)

is a GLm×GLm×GLm×GLm-modulo. We denote by Ψgri
n (A), the GLm×GLm×

GLm ×GLm-modulo F n
m(A).

The GLm×GLm×GLm×GLm representation theory shows that there exists an
one-to-one correspondence between irreducible GLm×GLm×GLm×GLm-modulos
and multipartitions 〈λ〉 = (λ(1), λ(2), λ(3), λ(4)) of n such that h(λ(i)) ≤ m, where
h(λ(i)) denotes the number of boxes of the first column of λ(i), i = 1, 2, 3, 4. We
denote by Ψ〈λ〉 the irreducible GLm ×GLm ×GLm ×GLm-character corresponding
to the multipartition 〈λ〉.

Since char(F ) = 0, we may write

Ψgri
n (A) =

∑
〈λ〉`〈n〉
h(〈λ〉)≤m

m̄〈λ〉Ψ〈λ〉,

where m̄〈λ〉 ≥ 0 is the respective multiplicity and h(〈λ〉) = max{h(λ(i)), i = 1, 2, 3, 4}.

We also have that all irreducible GLm ×GLm ×GLm ×GLm-modulo from F n
m

is cyclic, and is generated by a non-zero polynomial of the type

f〈λ〉 =

λ(1)1∏
i=1

Sthi(λ(1))(y1,0, . . . , yhi(λ(1)),0)

λ(2)1∏
i=1

Sthi(λ(2))(y1,1, . . . , yhi(λ(2)),1)

λ(3)1∏
i=1

Sthi(λ(3))(z1,0, . . . , zhi(λ(3)),0)

λ(4)1∏
i=1

Sthi(λ(4))(z1,1, . . . , zhi(λ(4)),1)
∑
σ∈Sn

ασσ

,
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where ασ ∈ F and the direct action of Sn under F n
m is defined as the place per-

mutation. This polynomial f〈λ〉 is called highest weight vector corresponding to the
multipartition 〈λ〉.

We consider the multitableaux T〈λ〉 which is filled by placing the numbers in
ascending order from top to bottom column by column. Its corresponding highest
weight vector is called the standard highest weight vector and we write

fT〈λ〉 =

λ(1)1∏
i=1

Sthi(λ(1))(y1,0, . . . , yhi(λ(1)),0)

λ(2)1∏
i=1

Sthi(λ(2))(y1,1, . . . , yhi(λ(2)),1)

λ(3)1∏
i=1

Sthi(λ(3))(z1,0, . . . , zhi(λ(3)),0)

λ(4)1∏
i=1

Sthi(λ(4))(z1,1, . . . , zhi(λ(4)),1)

.

We consider T〈λ〉 = (Tλ(1), . . . , Tλ(4)) a multitableaux. We know that every
polynomial f〈λ〉 can be written as a unique linear combination of polynomials of the
type

fT〈λ〉 =

λ(1)1∏
i=1

Sthi(λ(1))(y1,0, . . . , yhi(λ(1)),0)

λ(2)1∏
i=1

Sthi(λ(2))(y1,1, . . . , yhi(λ(2)),1)

λ(3)1∏
i=1

Sthi(λ(3))(z1,0, . . . , zhi(λ(3)),0)

λ(4)1∏
i=1

Sthi(λ(4))(z1,1, . . . , zhi(λ(4)),1)σ−1

,

where σ is the only permutation of Sn that changes the standard multitableaux to
the multitableaux T〈λ〉. The polynomial fT〈λ〉 is called highest weight vector corre-
sponding to the multitableaux T〈λ〉.

Theorem 1.3.3. If P gri
n (A) has Hn-character χgrin (A) =

∑
〈λ〉`〈n〉

m〈λ〉χ〈λ〉 and F n
m(A)

has GLm×GLm×GLm×GLm-character Ψgri
n (A) =

∑
〈λ〉`〈n〉
h(〈λ〉)≤m

m̄〈λ〉Ψ〈λ〉, then we have

m〈λ〉 = m̄〈λ〉, for all multipartition 〈λ〉 = (λ(1), λ(2), λ(3), λ(4)) such that λ(i) ` ni,
i = 1, 2, 3, 4, n = n1 + n2 + n3 + n4 and h(〈λ〉) ≤ m.

Remark 1.3.4. The multiplicity m̄〈λ〉 6= 0 if, and only if, there exists a multitableaux
T〈λ〉 such that fT〈λ〉 6∈ Idgri(A). Furthermore, m̄〈λ〉 is equal to the maximum number
of vectors fT〈λ〉 which are linearly independent in F n

m(A).

Previously, we have presented the cocharacter of Dgr, under a view of superal-
gebras, and of D∗ and M∗, under a view of ∗-algebras. Then, it is easy to find the
∗-graded cocharacter of these ∗-superalgebras. We have the following:

1. χgrin (D∗) =
∑n

j=0 χ(n−j),∅,(j),∅ and χgrin (Dgr) =
∑n

j=0 χ(n−j),(j),∅,∅;

2. If χgrin (M∗) =
∑
〈λ〉`〈n〉

m〈λ〉χ〈λ〉 then m((n),∅,∅,∅) = 1,

m〈λ〉 = q + 1 if


〈λ〉 = ((p+ q, p),∅,∅,∅), for all p, q ≥ 0
〈λ〉 = ((p+ q, p, 1),∅,∅,∅), for all p ≥ 1, q ≥ 0
〈λ〉 = ((p+ q, p),∅, (1),∅), for all p ≥ 1, q ≥ 0
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and m〈λ〉 = 0 otherwise.

From now on, we will use the representation theory of the general linear group
to compute the decomposition of the ∗-graded cocharacter of a ∗-superalgebra.

Lemma 1.3.5. For every n ≥ 1 we have χgrin (Dgri) =
∑n

j=0 χ(n−j),∅,∅,(j).

Proof. Fixed j ≥ 0, we consider fj = yn−j1,0 z
j
1,1 the standard highest weight vector

corresponding to the multipartition ((n − j),∅,∅, (j)). By evaluating y1,0 = (1, 1)
and z1,1 = (1,−1) we have fj(y1,0, z1,1) = (1, (−1)j) 6= 0. Then for all j ≥ 0 we have
m(n−j),∅,∅,(j) ≥ 1 and so

cgrin (Dgri) ≥
n∑
j=0

d(n−j),∅,∅,(j) =
n∑
j=0

(
n

j

)
= cgrin (Dgri).

Hence, χgrin (Dgri) =
∑n

j=0 χ(n−j),∅,∅,(j).

Theorem 1.3.6. [9, Theorem 6.4] If χgrin (M gri) =
∑
〈λ〉`〈n〉

m〈λ〉χ〈λ〉 then

m〈λ〉 =


1, if 〈λ〉 = ((n),∅,∅,∅)
q + 1, if 〈λ〉 = ((p+ q, p), (1),∅,∅)
q + 1, if 〈λ〉 = ((p+ q, p),∅,∅, (1))
0, otherwise,

where p, q ≥ 0 and 2p+ q + 1 = n.

Proof. By Theorem 1.2.6, cgrin (M gri) grows exponentially. Hence, M gri generates a
∗-supervariety of exponential growth.

We start by computing the decomposition of the ∗-graded cocharacter of M gri

into irreducible characters. Let

χgrin (M gri) =
∑
〈λ〉`〈n〉

m〈λ〉χ〈λ〉 (1.3.3)

be the decomposition of the ∗-graded cocharacter of M gri.

Now, since z1,0 is an identity of M gri, if χ〈λ〉 appears with non-zero multiplic-
ity in (1.3.3), we must have λ(3) = 0. Moreover, by Remark 1.2.5, two variables of
homogeneous degree 1 cannot appear in any non-zero monomial (mod Idgri(M gri)).
Thus m〈λ〉 6= 0 in (1.3.3) implies that either 〈λ〉 = (λ(1), (1),∅,∅) or 〈λ〉 =
(λ(1),∅,∅, (1)) or 〈λ〉 = (λ(1),∅,∅,∅). Since dimF ((M (0))+) = 2, any polyno-
mial alternating on three symmetric variables of homogeneous degree 0 vanishes in
M gri. By standard arguments this says that m〈λ〉 6= 0 implies that λ(1) = (p+ q, p),
where p ≥ 0, q ≥ 0, is a partition with at most two parts.
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As in the proof of the previous theorem, we have that symmetric variables of
homogeneous degree 0 commute (mod Idgri(M gri)). Hence, we have that m〈λ〉 6= 0
implies that either 〈λ〉 = ((n),∅,∅,∅) or 〈λ〉 = ((p + q, p),∅,∅, (1)) or 〈λ〉 =
((p+ q, p), (1),∅,∅), where p ≥ 0, q ≥ 0 and n = 2p+ q + 1.

We claim that m((p+q,p),∅,∅,(1)) = m((p+q,p),(1),∅,∅) = q+ 1. To this end, we follow
closely the proof of [25, Lemma 2] (or [29, Theorem 3]), taking into account the due
changes.

Define, for 0 ≤ i ≤ q, the polynomials

a(i)
p,q(y1,0, y2,0, x1,1) = yi1,0 ȳ1,0 · · · ỹ1,0︸ ︷︷ ︸

p

x1,1 ȳ2,0 · · · ỹ2,0︸ ︷︷ ︸
p

yq−i1,0 ,

where − and ∼ mean alternation on the corresponding variables and x1,1 = y1,1 or
x1,1 = z1,1.

Then we can show that the polynomials a
(i)
p,q are highest weight vectors corre-

sponding to Young multitableaux and they are linearly independent (mod Idgri(M gri)).
Hence, m((p+q,p),∅,∅,(1)) = m((p+q,p),(1),∅,∅) = q+ 1 as claimed. Also, through an obvi-
ous evaluation, it is clear that m((n),∅,∅,∅) = 1, for all n ≥ 1.

As a consequence of Poincaré-Birkhoff-Witt Theorem, we have that if A is a
∗-superalgebras A with 1, then its (Z2, ∗)-identities follow from its proper (Z2, ∗)-
identities. Hence, in order to study (Z2, ∗)-identities of unitary ∗-superalgebras, we
study the proper ones.

We denote by Γgrin the subspace of P gri
n of proper ∗-polynomials and establish

Γgri0 = span {1}. The sequence of proper ∗-graded codimensions is defined as

γgrii (A) = dim
Γgrin

Γgrin ∩ Idgri(A)
, n = 0, 1, 2, . . . .

For a unitary ∗-superalgebra the relation between ∗-graded codimension and
proper ∗-graded codimension, is given by

cgrin (A) =
n∑
i=0

(
n

i

)
γgrii (A), n = 0, 1, 2, . . . .

For every i ≥ 1, we have that Γgrik+i is a consequence of Γgrik , it means that

Γgrik+i ⊆ 〈Γ
gri
k 〉T ∗2 . As a consequence, we have the following.

Lemma 1.3.7. Let A be a ∗-superalgebra with 1. If for some k ≥ 2, γgrik (A) = 0
then γgrim (A) = 0 for all m ≥ k.

Since Γgrin (A) =
Γgrin

Γgrin ∩ Idgri(A)
is a Hn-submodulo of P gri

n (A), we consider its

Hn-character ψgrin (A), called proper n-th ∗-graded cocharacter of A.
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1.4 Almost polynomial growth

In this section, we present some results about the classification of ∗-superalgebras
with polynomial growth. We start with some results about the structure of ∗-
superalgebras which were given in [9].

Let A be a ∗-superalgebra, ϕ the automorphism of order 2 determined by the
Z2-grading and I an ideal of A. We say that I is a ∗-graded ideal, if Iϕ = I and
I∗ = I. A ∗-superalgebra A is a simple ∗-superalgebra if A2 6= {0} and A has no
non-zero ∗-graded ideals.

The next theorem is a generalization of Wedderburn-Malcev Theorem.

Theorem 1.4.1. [9, Theorem 7.3] Let A be a finite dimensional ∗-superalgebra over
a field F of characteristic zero. Then:

1. J(A) is a ∗-graded ideal;

2. If F is algebraically closed, then A = A1⊕· · ·⊕Am+J(A), where each algebra
Ai, i = 1, . . . ,m, is a simple ∗-superalgebra.

In [9] the authors characterized the finite dimensional simple ∗-superalgebras
over an algebraically closed field F of characteristic zero. They also characterized the
finite dimensional ∗-superalgebras of ∗-graded codimensions polynomially bounded.

Theorem 1.4.2. [9, Theorem 7.6] Let A be a finite dimensional simple ∗-superalgebra
over an algebraically closed field F of characteristic zero. Then A is isomorphic to
one of the following ∗-superalgebras:

1. Mk,l(F ), with k ≥ 1, k ≥ l ≥ 0, with transpose or symplectic involution (the
symplectic involution can occur only when k = l);

2. Mk,l(F )⊕Mk,l(F )op, with k ≥ 1, k ≥ l ≥ 0, with induced grading and exchange
involution;

3. Mn(F )+cMn(F ), with involution given by (a+cb)† = a∗−cb∗, where ∗ denotes
the transpose or symplectic involution;

4. Mn(F )+cMn(F ), with involution given by (a+cb)† = a∗+cb∗, where ∗ denotes
the transpose or symplectic involution;

5. (Mn(F ) + cMn(F ))⊕ (Mn(F ) + cMn(F ))op, with grading

(Mn(F )⊕Mn(F )op, c(Mn(F )⊕Mn(F )op))

and exchange involution.

Theorem 1.4.3. [9, Theorem 8.3] Let A be a finite dimensional ∗-superalgebra over
an algebraically closed field F of characteristic zero. Then cgrin (A) is polynomially
bounded if and only if



CHAPTER 1. ∗-SUPERALGEBRAS 21

1. cn(A) is polynomially bounded;

2. A = B + J(A), where B is a maximal semisimple subalgebra of A with trivial
induced Z2-grading and trivial induced involution.

In [9] the authors proved that a finite dimensional ∗-superalgebra A has polyno-
mial growth if, and only if, Idgri(A) = Idgri(B) for some finite dimensional ∗-super-
algebra B having an explicit decomposition into suitable subalgebras with induced
graded involution ∗.

Theorem 1.4.4. [2, Theorem 3.5] Let A be a finite dimensional ∗-superalgebra
over a field F of characteristic zero. Then cgrin (A) is polynomially bounded if and
only if vargri(A) = vargri(B1 ⊕ · · · ⊕ Bm), where each Bi is a finite dimensional
∗-superalgebra over F such that dimF Bi/J(Bi) ≤ 1, for all i = 1, . . . ,m.

This result will be very useful in the next chapter. Whenever we want to prove
some property about a ∗-superalgebra A such that cgrin (A) is polynomially bounded,
we can study the properties of ∗-superalgebras of the type F + J , and then recover
the property about A.

Recall that if A = F +J is a finite dimensional algebra over F where J = J(A) is
its Jacobson radical, then J can be decomposed into the direct sum of B-bimodules

J = J00 ⊕ J01 ⊕ J10 ⊕ J11 (1.4.1)

where for i ∈ {0, 1}, Jik is a left faithful module or a 0-left module according as i = 1
or i = 0, respectively. In a similar way, Jik is a right faithful module or a 0-right
modulo according as k = 1 or k = 0, respectively. Moreover, for i, k, r, s ∈ {0, 1},
JirJrs ⊆ Jis, JikJrs = 0 for k 6= r and J11 = BN for some nilpotent subalgebra N of
A commuting with B.

We also have that the given modules are graded and if the algebra A has an
involution ∗, then J00 and J11 are stable under the involution whereas J∗01 = J10.

We say that a ∗-superalgebra A has almost polynomial growth, or, A is an APG
∗-superalgebra, if the sequence of the ∗-graded codimensions of A grows exponentially
but any proper subvariety of A has polynomial growth.

We have seen in Theorems 1.1.1 and 1.1.2 that vargr(Dgr), var∗(D∗) and
var∗(M∗) are varieties of almost polynomial growth, according to the point of view.
Then we have the following.

Lemma 1.4.5. [9, Theorem 5.1] vargri(D∗), var
gri(M∗) and vargri(Dgr) are APG

∗-supervarieties.

Proof. Since the grading on D∗ is trivial, we have that

Idgri(D∗) = 〈Id∗(D∗), y1,1, z1,1〉T ∗2 ,
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the T ∗2 -ideal generated by Id∗(D∗), y1,1, z1,1. Also cgrin (D∗) = c∗n(D∗), hence cgrin (D∗)
grows exponentially . Let U be a proper subvariety of vargri(D∗). Since U ⊂
vargri(D∗), we have that y1,1, z1,1 ∈ Idgri(U). Hence Idgri(U) = 〈Id∗(U), y1,1, z1,1〉T ∗2 ,
cgrin (U) = c∗n(U) and cgrin (U) is polynomially bounded. Hence, vargri(D∗) is an APG
∗-supervariety. Analogously, vargri(M∗) is an APG ∗-supervariety.

Similarly, since Dgr has trivial involution, we have that

Idgri(Dgr) = 〈Idgr(Dgr), z1,0, z1,1〉T ∗2 ,

the T ∗2 -ideal generated by Idgr(Dgr), z1,0, z1,1. Also cgrin (Dgr) = cgrn (Dgr), then
cgrin (Dgr) grows exponentially. Let U be a proper subvariety of vargri(Dgr). Since
U ⊂ vargri(Dgr), we get z1,0, z1,1 ∈ Idgri(U). Hence Idgri(U) = 〈Idgr(U), z1,0, z1,1〉T ∗2 ,
cgrin (U) = cgrn (U) and cgrin (U) is polynomially bounded. Hence, vargri(Dgr) is also an
APG ∗-supervariety.

Lemma 1.4.6. Dgri generates an APG ∗-supervariety.

Proof. First notice that Idgri(A) * Idgri(Dgri) if, and only if, zr1,1 ∈ Idgri(A), for
some r ≥ 1.

In fact, if zr1,1 ∈ Idgri(A), for some r ≥ 1, then Idgri(A) * Idgri(Dgri), by Lemma
1.2.4. Suppose now that Idgri(A) * Idgri(Dgri). Then there exists f ∈ Idgri(A) such
that f 6∈ Idgri(Dgri), then we must have f = f(y1,0, . . . , yr,0, z1,1, . . . , zn−r,1), since
z1,0, y1,1 ∈ Idgri(Dgri).

We may assume f multilinear and so f does not vanish in a basis of Dgri.
Consider a = (1, 1) and b = (1,−1) and notice that {a} and {b} form a basis for
((Dgri)(0))+ and ((Dgri)(1))−, respectively. Since b2 = a is a even symmetric element
and f 6∈ Idgri(Dgri), we have:

0 6= f(a, . . . , a, b, . . . , b) = f(b2, . . . , b2, b, . . . , b) = αbn+r,

where α 6= 0 is equal to the sum of the coefficients of f . Since z2
1,1 is an even sym-

metric monomial, it follows that f(z2
1,1, . . . , z

2
1,1, z1,1, . . . , z1,1) = αzn+r

1,1 ∈ Idgri(A)
and since α 6= 0 it implies that zn+r

1,1 ∈ Idgri(A).

LetA ∈ vargri(Dgri) such that vargri(A) ( vargri(Dgri). Then for any (λ,∅,∅, µ),
if mλ,∅,∅,µ and m′λ,∅,∅,µ are the multiplicity of χλ,∅,∅,µ in χgrin (A) and χgrin (Dgri),
respectively, then mλ,∅,∅,µ ≤ m′λ,∅,∅,µ. Thus we have, by Lemma 1.3.5,

χgrin (A) =
n∑
j=0

mjχ(n−j),∅,∅,(j),

where mj ∈ {0, 1}. We have that even symmetric variables and odd skew variables
commute modulo Idgri(Dgri) and, by the previous remark, we have that zr1,1 ∈
Idgri(A) for some r ≥ 1. This implies that mj = 0 for all j ≥ r. Thus

cgrin (A) ≤
r−1∑
j=0

χ(n−j),∅,∅,(j) =
r−1∑
j=0

(
n

j

)
≈ 1

(r − 1)!
nr−1.
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Hence, cgrin (A) is polynomially bounded.

Next, we characterize varieties of polynomial growth which are generated by
finite dimensional ∗-superalgebras, by excluding from them the ∗-superalgebras
D∗,M∗, D

gr, Dgri and M gri. We start with the following lemmas.

Lemma 1.4.7. [9, Lemma 8.4] Let A and B be ∗-superalgebras. If B has trivial
grading and B 6∈ vargri(A), then B 6∈ var∗(A(0)).

Proof. Clearly, Idgri(A(0)) = 〈Id∗(A(0)), y1,1, z1,1〉T ∗2 and also Idgri(B) = 〈Id∗(B),

y1,1, z1,1〉T ∗2 . Hence, if B ∈ var∗(A(0)), then B ∈ vargri(A(0)). Since A(0) is a subal-

gebra of A, vargri(A(0)) ⊆ vargri(A) which says that B ∈ vargri(A).

Lemma 1.4.8. [9, Lemma 8.5] Let A be a finite dimensional ∗-superalgebra over
an algebraically closed field of characteristic zero. Let A = A1 ⊕ · · · ⊕ Ak + J be a
Wedderburn-Malcev decomposition of A, where A1, . . . , Ak are simple ∗-superalgebras.
If for some i, l ∈ {1, . . . , k}, i 6= l, we have that A

(0)
i J (1)A

(0)
l 6= {0}, then M gri ∈

vargri(A).

Proof. Suppose that there exist i, l ∈ {1, . . . , k}, i 6= l, such that A
(0)
i J (1)A

(0)
l 6= {0}

and let a ∈ A
(0)
i , b ∈ A

(0)
l , j′ ∈ J (1) such that aj′b 6= 0. If e1 and e2 are the unit

elements of A
(0)
i and A

(0)
l , respectively, then e1aj

′be2 6= 0 and if we set aj′b = j, we
have e1je2 6= 0 with j ∈ J (1).

Let k ≥ 1 be the largest integer such that e1Je2 ⊆ Jk and let A′ = A/Jk+1.
Since J is a ∗-graded ideal, A′ is a ∗-superalgebra and A′ ∈ vargri(A).

Let ē1, ē2, j̄ be the images of e1, e2, j in A′, respectively. Since J̄ = J(A′) =
J/Jk+1, we have that ē1J̄ ē2 6= {0}. Let C = span{ē1, ē2, e1je2, e2j∗e1}. Since e1

and e2 are orthogonal idempotents and e1Je2J = e2Je1J ⊆ Jk+1 we get that C is
a subalgebra of A′. Moreover, C is a ∗-superalgebra and (C(0))+ = span{ē1, ē2},
(C(0))− = {0}, (C(1))+ = span{e1je2 + e2j∗e1} and (C(1))− = span{e1je2 − e2j∗e1}.
Recalling the multiplication table of M gri we obtain that the map ψ : C → M gri

defined by ē1 7→ e11+e44, ē2 7→ e22+e33, e1je2 7→ e12, e2j∗e1 7→ e34 is an isomorphism
of ∗-superalgebras. Hence M gri ∈ vargri(C) ⊆ vargri(A′) ⊆ vargri(A) and we are
done.

In order to prove the following theorem, we will need to introduce one more
concept about the exponent of an algebra.

Let A be a PI-algebra over a field F of characteristic zero. It is well known
that cn(A) is exponentially bounded and, in [10], Giambruno and Zaicev proved
that exp(A) = limn→∞

n
√
cn(A) exists and is a non-negative integer called the PI-

exponent of the algebra A. Moreover, cn(A) is polynomially bounded if, and only
if, exp(A) ≤ 1.
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The authors also determinate a way to compute the exponent. Let A be a finite
dimensional algebra over an algebraically closed field F of characteristic zero and
let B be a maximal semisimple subalgebra of A. Then

exp(A) = max
i

dimF (C
(i)
1 + · · ·+ C

(i)
k ),

where C
(i)
1 , . . . , C

(i)
k are distinct simple subalgebras of B and

C
(i)
1 JC

(i)
2 J · · · JC(i)

k−1JC
(i)
k 6= {0}.

In the following theorem, we characterize the APG ∗-varieties generated by
finite dimensional ∗-superalgebras.

Theorem 1.4.9. [9, Theorem 8.6] Let A be a finite dimensional ∗-superalgebra over
a field of characteristic zero. Then cgrin (A) is polynomially bounded if and only if
M∗, D∗, D

gr, Dgri, M gri 6∈ vargri(A).

Proof. By Lemma 1.2.7, we may assume that the field F is algebraically closed.
Suppose that cgrin (A) is polynomially bounded. Since, by Theorem 1.4.5 and by
Theorem 1.2.6, the ∗-graded codimensions of M∗, D∗, D

gr, Dgri and M gri grow
exponentially, we get that M∗, D∗, D

gr, Dgri, M gri 6∈ vargri(A).

Conversely, suppose that M∗, D∗, D
gr, Dgri,M gri 6∈ vargri(A). Let A = B + J

be a Wedderburn-Malcev decomposition of A, where B is a maximal semisimple
∗-superalgebra. Write B = A1⊕· · ·⊕Ak, where the A′is are simple ∗-superalgebras.
Then

A(0) = B(0) + J (0) = A
(0)
1 ⊕ · · · ⊕ A

(0)
k + J (0)

is an algebra with involution and with trivial grading. Since, by Lemma 1.4.7,
M∗, D∗ 6∈ vargri(A(0)), we have, by Theorem 1.1.2, that c∗n(A(0)) = cgrin (A(0)) is

polynomially bounded. Also A
(0)
i
∼= F , for all i = 1, . . . , k, and ∗ is the identity map

on B(0). Since cn(A(0)) ≤ c∗n(A(0)) is polynomially bounded, exp(A(0)) ≤ 1 and so

A
(0)
i J (0)A

(0)
l = {0}, for all i, l ∈ {1, . . . , k}, i 6= l.

Next, we consider B and we have Ai = A
(0)
i ⊕ A

(1)
i , for all i = 1, . . . , k. Since

A′is are simple superalgebras, by Theorem 1.4.2 and by the above, either Ai ∼= F
or Ai ∼= F + cF with trivial involution or Ai ∼= F + cF with the involution given
by (a + cb)∗ = a − cb, for i = 1, . . . , k. If, for some i, Ai ∼= F + cF with trivial
involution, then Dgr ∈ vargri(A), a contradiction. If, for some i, Ai ∼= F + cF
with the involution given by (a + cb)∗ = a − cb, then Dgri ∈ vargri(A), another
contradiction. Thus B has trivial grading and trivial involution.

Now, suppose that there exist i, l ∈ {1, . . . , k}, i 6= l, such that AiJAl =

A
(0)
i J (1)A

(0)
l 6= {0}. Then, by Lemma 1.4.8, M gri ∈ vargri(A), a contradiction.

Therefore, we have that, for all i, l ∈ {1, . . . , k}, i 6= l, AiJAl = {0}. By the proper-
ties of exp(A), we have that exp(A) ≤ 1 and cn(A) is polynomially bounded. Hence,
by Theorem 1.4.3, cgrin (A) is polynomially bounded and this completes the proof of
the theorem.
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As an immediate consequence of the above theorem, we have that if A is a finite
dimensional ∗-superalgebra over a field of characteristic zero, then the sequence
cgrin (A), n ≥ 1, is either polynomially bounded or grows exponentially. Moreover, we
classify all the APG ∗-supervarieties generated by finite dimensional ∗-superalgebras.

Corollary 1.4.10. [9, Corollary 8.8] vargri(M∗), var
gri(D∗), var

gri(Dgr), vargri(Dgri)
and vargri(M gri) are the only ∗-supervarieties of almost polynomial growth generated
by finite dimensional ∗-superalgebras.

We say that V is a minimal variety of polynomial growth nk if asymptotically
cgrin (V) ≈ ank, for some a 6= 0, and cgrin (U) ≈ bnt, with t < k, for any proper
subvariety U of V .

In the next chapters, we classify all the subvarieties of the APG ∗-varieties gener-
ated by finite dimensional ∗-superalgebras, and exhibit the decompositions of the ∗-
graded cocharacters of all minimal subvarieties of vargri(M∗), var

gri(M gri), vargri(D∗),
vargri(Dgr) and vargri(Dgri) and compute their ∗-graded colengths. We will collect
such results to classify the varieties such that the sequence of ∗-graded colengths of
them is bounded by three.
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Chapter 2

The APG noncommutative
∗-superalgebras

In [21] and [12], the authors considered the algebra M as an algebra with invo-
lution and as an algebra with superinvolution, and classified all subvarieties of the
∗-variety var∗(M∗) and of the variety with superinvolution varsup(M), respectively.

In this chapter, we clarify the concept of superinvolution, explain why the
classification given by those authors implies the classification of all subvarieties of
the ∗-supervarieties vargri(M∗) and vargri(M gri), and establish the results given in
[21] and [12] in the language of ∗-superalgebras.

We also compute the ∗-graded colength of the minimal subvarieties obtained.
Such results about the minimal subvarieties lying in var∗(M∗) have been recently
submitted for publication in our joint work with La Mattina and Vieira [23], in
∗-algebras language. The results of this chapter will be collected in order to classify
the ∗-superalgebras with ∗-graded colength bounded by three in the last chapter of
this thesis.

2.1 Subvarieties of the vargri(M∗)

Recall that

M∗ =




u r 0 0
0 s 0 0
0 0 s v
0 0 0 u

 |u, r, s, v ∈ F


with trivial grading and endowed with the reflection involution. Moreover, we have
Idgri(M∗) = 〈z1,0z2,0, y1,1, z1,1〉T ∗2 .

The purpose of this section is to construct ∗-superalgebras belonging to the
variety generated by the algebra M∗.
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Since M∗ is a ∗-superalgebra with trivial grading, we can see the algebra M∗
only with the involution algebra structure. Then, we have that the classification of
the ∗-superalgebras, up to T ∗2 -equivalence, inside vargri(M∗) and the classification
of the ∗-algebras inside the var∗(M∗) are equivalent.

The classification of all subvarieties inside the ∗-variety generated by the ∗-
algebra M∗ was given in [21, Theorem 7] by La Mattina and Martino in 2015. Here,
we restate such results in ∗-superalgebra language.

In order to describe the subvarieties of vargri(M∗), we start by considering, for
any fixed k ≥ 2, the algebra UT2k of 2k × 2k upper triangular matrices over F and

E =
k−1∑
i=2

ei,i+1 + e2k−i,2k−i+1 ∈ UT2k, where e′ijs are the usual matrix units. Also we

consider the subalgebras Nk,∗, Uk,∗ and Ak,∗ of UT2k introduced in [21].

For k ≥ 2, we denote by Nk,∗ the subalgebra of UT2k:

Nk = spanF{I2k, E, . . . , E
k−2; e12 − e2k−1,2k, e13, . . . , e1k, ek+1,2k, ek+2,2k, . . . , e2k−2,2k}

with trivial grading and endowed with the reflection involution, where I2k denotes
the (2k)× (2k) identity matrix. Notice that

(N
(0)
k,∗)

+ = spanF{I2k, E, . . . , E
k−2, e13 + e2k−2,2k, . . . , e1k + ek+1,2k} and

(N
(0)
k,∗)

− = spanF{e12 − e2k−1,2k, e13 − e2k−2,2k, . . . , e1k − ek+1,2k}.

Then we have Nk,∗ ∈ vargri(M∗), since z1,0z2,0 is a (Z2, ∗)-identity of Nk,∗.

Similarly, for any k ≥ 2, we denote by Uk,∗ the algebra:

Uk = spanF{I2k, E, . . . , E
k−2; e12 + e2k−1,2k, e13, . . . , e1k, ek+1,2k, ek+2,2k, . . . , e2k−2,2k}

with trivial grading and endowed with the reflection involution. Notice that we also
have Uk,∗ ∈ vargri(M∗), since

(U
(0)
k,∗)

+ = spanF{I2k, E, . . . , E
k−2, e12 + e2k−1,2k, e13 + e2k−2,2k, . . . , e1k + ek+1,2k},

(U
(0)
k,∗)

− = spanF{e13 − e2k−2,2k, . . . , e1k − ek+1,2k}.

For example, for k = 2, 4, we haveN2,∗ =


a −b 0 0
0 a 0 0
0 0 a b
0 0 0 a

, U2,∗ =


a b 0 0
0 a 0 0
0 0 a b
0 0 0 a

,

N4,∗ =



a b c d 0 0 0 0
0 a f g 0 0 0 0
0 0 a f 0 0 0 0
0 0 0 a 0 0 0 0
0 0 0 0 a f g h
0 0 0 0 0 a f i
0 0 0 0 0 0 a −b
0 0 0 0 0 0 0 a


and U4,∗ =



a b c d 0 0 0 0
0 a f g 0 0 0 0
0 0 a f 0 0 0 0
0 0 0 a 0 0 0 0
0 0 0 0 a f g h
0 0 0 0 0 a f i
0 0 0 0 0 0 a b
0 0 0 0 0 0 0 a


.
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Remark 2.1.1. [22, Remark 8] Let A be a ∗-superalgebra. If z1,0 · · · zm,0 is a (Z2, ∗)-
identity of A, for some m ≥ 1, then

z1,0w1z2,0w2 · · ·wm−1zm,0

is a (Z2, ∗)-identity of A, where w1, . . . , wm are monomials of F 〈X|Z2, ∗〉 in variables
of homogeneous degree 0.

Proof. Notice that for s ∈ (A(0))+, k ∈ (A(0))− we have sk + ks ∈ (A(0))−, then
ks = −sk + k′, for some k′ ∈ (A(0))−. If we evaluate the polynomial

z1,0w1z2,0w2 · · ·wm−1zm,0

in A(0), after a repeated application of the relation ks = −sk + k′, we can write
the evaluation as a linear combination of monomials each one containing at least m
consecutive skew even elements. Since the product of m skew even elements of A
is zero, we obtain that all evaluation in the polynomial z1,0w1z2,0w2 · · ·wm−1zm,0 is
also zero. Hence the proof is completed.

We notice that U2,∗ ∼T ∗2 F is the commutative algebra with trivial grading
and trivial involution. The result about the (Z2, ∗)-identities and the ∗-graded
codimensions of Nk,∗ and Uk,∗ follows bellow.

Lemma 2.1.2. For the ∗-superalgebras N2,∗ and U2,∗ we have

1. [21, Lemma 3] Idgri(U2,∗) = 〈z1,0, y1,1, z1,1〉T ∗2 ,

2. [22, Lemma 10] Idgri(N2,∗) = 〈y1,1, z1,1, z1,0z2,0, [y1,0, y2,0], [y1,0, z1,0]〉T ∗2 ,

3. cgrin (U2,∗) = 1 and cgrin (N2,∗) = n+ 1.

Proof. In order to prove the item (1), just notice that (U
(0)
2,∗ )

+ = spanF{I4, e12+e3,4}
and (U

(0)
2,∗ )

− = 0, then we get that U2,∗ is T ∗2 -equivalent to a commutative algebra
with trivial grading and trivial involution. Hence Idgri(U2,∗) = 〈z1,0, y1,1, z1,1〉T ∗2 and
cgrin (U2,∗) = 1.

Now we study the algebra N2,∗. Let I = 〈[y1,0, y2,0], [y1,0, z1,0], z1,0z2,0, y1,1, z1,1〉T ∗2 .

Since (N
(0)
2,∗ )

+ = spanF{I4} and (N
(0)
2,∗ )

+ = spanF{e12−e3,4} we can easily check that
I ⊂ Idgri(N2,∗).

Let f be a (Z2, ∗)-identity of N2,∗, we may assume f multilinear of degree n.
Since y1,1, z1,1, z1,0z2,0 ∈ I, by the previous remark, we can write f modulo I as a
linear combination of the polynomials

y1,0 · · · yn,0, yi1,0 · · · yin−1,0z1,0, i1 < . . . < in−1.

Now let f be a linear combination of these polynomials. By the multihomo-
geneity of T ∗2 -ideals we may assume f = αy1,0 · · · yn,0 or f = βy1,0 · · · yn−1,0zn,0.
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By evaluating in y1,0 = . . . = yn,0 = I4, we get α = 0. Also, the evaluation
y1,0 = . . . = yn−1,0 = I4 and zn,0 = e12 − e34 gives β = 0.

It shows that these polynomials are linearly independent modulo P gri
n ∩Idgri(N2,∗).

Since P gri
n ∩I ⊆ P gri

n ∩Idgri(N2,∗), it follows that I = Idgri(N2,∗) and the polynomials
above form a basis of P gri

n (mod P gri
n ∩ Idgri(N2,∗)). Hence cgrin (N2,∗) = 1 + n.

Lemma 2.1.3. [21, Lemma 2] Let k ≥ 3. Then

1. Idgri(Nk,∗) = 〈y1,1, z1,1, z1,0z2,0, [y1,0, . . . , yk−1,0]〉T ∗2 .

2. cgrin (Nk,∗) = 1 +
k−2∑
j=1

(
n
j

)
(2j − 1) +

(
n
k−1

)
(k − 1) ≈ qnk−1, for some q > 0.

Proof. Let I = 〈[y1,0, . . . , yk−1,0] , z1,0z2,0, y1,1, z1,1〉T ∗2 . We can see that I ⊂ Idgri(Nk,∗).

We shall prove the opposite inclusion. Let f ∈ Idgri(N gri
k ) be a multilinear poly-

nomial. Since Nk,∗ is a unitary algebra, we can assume f is a proper polynomial.
After reducing f modulo I, we obtain the following:

(i) If deg f ≥ k, we have f ≡ 0.

(ii) If deg f = k − 1, so f is a linear combination of polynomials

[zi,0, yi1,0, . . . , yik−2,0], for i = 1, . . . , k − 1, i1 < . . . < ik−2.

(iii) If deg f = s < k − 1, so f is a linear combination of polynomials

[zi,0, yi1,0, . . . , yis−1,0], [yj,0, yj1,0, . . . , yjs−1,0],

where i = 1, . . . , s, i1 < . . . < is−1 and j > j1 < . . . < js−1.

Hence, modulo I, we can assume that for some 1 ≤ s ≤ k − 1

f =
s∑
i=1

αi[zi,0, yi1,0, . . . , yis−1,0] +
s∑
j=2

βj[yj,0, yj1,0, . . . , yjs−1,0].

Suppose that there exists j such that βj 6= 0. By making the evaluation zi,0 = 0,
for all i = 1, . . . , s, yj,0 = e13 + e2k−2,2k, yjm = E, for all m = 1, . . . , s − 1, we get
βj = 0, a contradiction. Then, βj = 0, for all 2 ≤ j ≤ s.

Now, suppose that there exists i such that αi 6= 0. By evaluating in zi,0 =
e12 − e2k−1,2k, zt,0 = 0, for all t 6= i, yim = E, for all m = 1, . . . , s − 1 we get the
result αi = 0, a contradiction. Then, αi = 0, for all 1 ≤ j ≤ s.

The arguments above say that f ∈ I, and so I = Idgri(Nk,∗). Moreover, we also
have proved that the proper ∗-graded codimensions are:

γgris (Nk,∗) =


0, if s ≥ k
s, if s = k − 1
2s− 1, if 0 ≤ s < k − 1
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Then we conclude that cgrin (Nk,∗) = 1 +
k−2∑
j=1

(
n
j

)
(2j − 1) +

(
n
k−1

)
(k − 1).

By using similar arguments as in the proof of the Lemma 2.1.3, we can prove
the following results about the (Z2, ∗)-identities and ∗-graded codimensions of Uk,∗
and Nk,∗ ⊕ Uk,∗, for k ≥ 3.

Lemma 2.1.4. [21, Lemma 3] Let k ≥ 3. Then

1. Idgri(Uk,∗) = 〈y1,1, z1,1, z1,0z2,0, [z1,0, y1,0, . . . , yk−2,0]〉T ∗2 .

2. cgrin (Uk,∗) = 1 +
k−2∑
j=1

(
n
j

)
(2j − 1) +

(
n
k−1

)
(k − 2) ≈ qnk−1, for some q > 0.

Notice that if t > k then Nt,∗ ⊕ Uk,∗ ∼T ∗2 Nt,∗, on other hand, if t < k we have
Nt,∗ ⊕ Uk,∗ ∼T ∗2 Uk,∗. Moreover, if k = t = 2 then N2,∗ ⊕ U2,∗ ∼T ∗2 N2,∗.

Lemma 2.1.5. [21, Lemma 4] If k ≥ 3, then

1. Idgri(Nk,∗⊕Uk,∗) = 〈y1,1, z1,1, z1,0z2,0, [y1,0, y2,0, . . . , yk,0], [z1,0, y1,0, . . . , yk−1,0]〉T ∗2 ,

2. cgrin (Nk,∗ ⊕ Uk,∗) = 1 +
k−1∑
j=1

(
n
j

)
(2j − 1) ≈ qnk−1, for some q > 0.

Now for k ≥ 2, we denote by Ak,∗ the subalgebra of UT2k:

Ak = spanF{e11 + e2k,2k, E, . . . , E
k−2; e12, e13, . . . , e1k, ek+1,2k, ek+2,2k, . . . , e2k−1,2k},

with trivial grading and endowed with the reflection involution. Notice that

(A
(0)
k,∗)

+ = spanF{e11+e2k,2k, E, . . . , E
k−2, e12+e2k−1,2k, e13+e2k−2,2k, . . . , e1k+ek+1,2k} and

(A
(0)
k,∗)
− = spanF{e12 − e2k−1,2k, e13 − e2k−2,2k, . . . , e1k − ek+1,2k}.

Then we have Ak,∗ ∈ vargri(M∗), since z1,0z2,0 is a (Z2, ∗)-identity of Ak,∗.

For example, for k = 2, 4, we have

A2,∗ =


a b 0 0
0 0 0 0
0 0 0 c
0 0 0 a

 and A4,∗ =



a b c d 0 0 0 0
0 0 f g 0 0 0 0
0 0 0 f 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 f g h
0 0 0 0 0 0 f i
0 0 0 0 0 0 0 j
0 0 0 0 0 0 0 a


.

Let St3(y1, y2, y3) =
∑

σ∈Sn sgn(σ)yσ(1)yσ(2)yσ(3) denote the standard polynomial
of degree 3. About the ∗-identities and the ∗-graded codimensions of the algebras
Ak,∗ we have the following.
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Lemma 2.1.6. For the ∗-algebra A2,∗, we have

1. [22, Lemma 11]Idgri(A2,∗) = 〈y1,1, z1,1, z1,0z2,0, St3(y1,0, y2,0, y3,0), y1,0z1,0y2,0〉T2∗

2. cgrin (A2,∗) = 4n− 1, for n ≥ 3.

Proof. Let I = 〈y1,1, z1,1, z1,0z2,0, St3(y1,0, y2,0, y3,0), y1,0z1,0y2,0〉T ∗2 . We can easily
check that I ⊆ Idgri(A2,∗). Let us show the opposite inclusion.

First, notice that since z1,0z2,0 ∈ Idgri(A2,∗), by Remark 2.1.1 we have z1,0wz2,0 ∈
Idgri(A2,∗) for any monomial w of F 〈X|Z2, ∗〉 in variables of homogeneous degree 0.
Then, since y1,1, z1,1 ≡ 0 on A2,∗ we must have P gri

n1,n2,n3,n4
(A2,∗) = {0}, if n2 > 0 or

n4 > 0 or n3 ≥ 2. Thus by (1.3.1),

cgrin (A2,∗) = cgrin,0,0,0(A2,∗) + ncgrin−1,0,1,0(A2,∗). (2.1.1)

We start by considering P gri
n,0,0,0(A2,∗). By Poincaré-Birkhoff-Witt theorem, every

monomial in y1,0, . . . , yn,0 can be written as a linear combination of products of the
type

yi1,0 · · · yis,0w1 · · ·wm (2.1.2)

where w1, . . . , wm are left normed Lie commutators in the y′i,0s and i1 < . . . < is.
Since [y1,0, y2,0][y3,0, y4,0], y1,0[y2,0, y3,0]y4,0 ∈ I, then modulo [y1,0, y2,0][y3,0, y4,0], at
most one commutator can appear in (2.1.2), i.e. elements in (2.1.2) are polynomials
of type

y1,0 · · · yn,0 or yi1,0 · · · yis,0[yr,0, yj1,0, . . . , yjt,0] with r > ji < . . . < jt.

Moreover, modulo y1,0[y2,0, y3,0]y4,0 we have

[yr,0, yj1,0 . . . , yjt,0] = [yr,0, yj1,0]yj2,0 · · · yjt,0 ± yj2,0 · · · yjt,0[yr,0, yj1,0].

Then, modulo I, every polynomial in P gri
n,0,0,0 can be written as a linear combination

of elements of the type

[yr,0, y1,0]y2,0 · · · ŷr,0 · · · yn,0, yi1,0 · · · yin−2,0[yi,0, yj,0] and y1,0 · · · yn,0. (2.1.3)

Notice that elements of the first type only appear in case s = 0 in (2.1.2). Now
since [y1,0, y2,0]w[y3,0, y4,0] ∈ I, where w is a monomial in y′i,0s, then the variables
out of the commutator in the polynomials of the second type in (2.1.3) can be
ordered. Moreover, since St3(y1,0, y2,0, y3,0) ∈ I, then y1,0[y2,0, y3,0] ≡ y2,0[y1,0, y3,0] +
y3,0[y2,0, y1,0] can be applied and we obtain that the polynomials

[yr,0, y1,0]y2,0 · · · ŷr,0 · · · yn,0, y2,0 · · · ŷr,0 · · · yn,0[yr,0, y1,0] and y1,0 · · · yn,0, (2.1.4)

generate P gri
n,0,0,0 modulo P gri

n,0,0,0 ∩ I.

Let f ∈ P gri
n,0,0,0∩Idgri(A2,∗) be a linear combination of the polynomials in (2.1.4)

and write

f = αy1,0 · · · yn,0 +
n∑
j=1

αj[yj,0, y1,0]y2,0 · · · ŷr,0 · · · yn,0 + βjy2,0 · · · ŷr,0 · · · yn,0[yj,0, y1,0].
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First, by making yi,0 = e11 + e44 for all i = 1, . . . , n, we get α(e11 + e44) = 0, then
α = 0. Now, for a fixed j, we make the evaluation yj,0 = e12 +e34 and yi,0 = e11 +e44,
for all i 6= j, and we get αje34 − βje12 = 0. Then αj = βj = 0.

These arguments prove that P gri
n,0,0,0∩I = P gri

n,0,0,0∩Idgri(A2,∗) and the polynomials

in (2.1.4) form a basis for P gri
n,0,0,0(A2,∗). Thus cgrin,0,0,0(A2,∗) = 1 + 2(n− 1) = 2n− 1.

We now consider P gri
n−1,0,1,0(A2,∗). Since y1,0z1,0y2,0 ∈ I, then P gri

n−1,0,1,0 can be

generated modulo P gri
n−1,1,0,0 ∩ I by the monomials

zn,0y1,0 · · · yn−1,0 and y1,0 · · · yn−1,0zn,0. (2.1.5)

We claim that these polynomials form a basis of P gri
n−1,1,0,0(A2,∗). In fact, let f ∈

P gri
n−1,0,1,0 ∩ Idgri(A2,∗) be a linear combination of the polynomials in (2.1.5),

f = αzn,0y1,0 · · · yn−1,0 + βy1,0 · · · yn−1,0zn,0.

By making the evaluation zn,0 = e12 − e34 and yi,0 = e11 + e44, for all i 6= n, we
get −αe34 + βe12 = 0, and so α = β = 0. It follows that P gri

n−1,0,1,0 ∩ Idgri(A2,∗) =

P gri
n−1,0,1,0 ∩ I and the affirmation is proved. Thus cgrin−1,1,0,0(A2,∗) = 2.

Hence, by the multihomogeneity of T ∗2 -ideals, Idgri(A2,∗) = I, and according to
(2.1.1) we have cgrin (A2,∗) = 2n− 1 + 2n = 4n− 1.

Remark 2.1.7. Consider k ≥ 3, I1 = 〈[y1,0, y2,0] [y3,0, y4,0] , [y1,0, y2,0] y3,0 . . . yk+1,0〉T ∗2
and I2 = 〈[y1,0, y2,0] [y3,0, y4,0] , y3,0 . . . yk+1,0 [y1,0, y2,0]〉T ∗2 . In a similar way as the [19,

Lemma 3.1] we can prove that

cgrin,0,0,0(I1) = cgrin,0,0,0(I2) = 1 +
k−2∑
j=0

(
n

j

)
(n− j − 1).

Moreover, if I is the T ∗2 -ideal I1 ∩ I2 then

I = 〈[y1,0, y2,0] [y3,0, y4,0] , y1,0 . . . yk−1,0 [yk,0, yk+1,0] yk+2,0 . . . y2k,0〉T ∗2 .

From Remark 1.3.1, we have the strict inequality

cgrin,0,0,0(I) < cgrin,0,0,0(I1) + cgrin,0,0,0(I2)

since y1,0 · · · yn,0 is a polynomial in P gri
n,0,0,0 which is not in (P gri

n,0,0,0∩I1)+(P gri
n,0,0,0∩I2).

Furthermore I ∩ P gri
n,0,0,0 ⊂ Idgri(Ak,∗) ∩ P gri

n,0,0,0, then we have

cgrin,0,0,0(Ak,∗) ≤ cgrin,0,0,0(I) < cgrin,0,0,0(I1) + cgrin,0,0,0(I2) = 2 + 2
k−2∑
j=0

(
n

j

)
(n− j − 1).

(2.1.6)

Lemma 2.1.8. Let k ≥ 2. Then
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1. [21, Lemma 1] Idgri(Ak,∗) = 〈y1,1, z1,1, z1,0z2,0, y1,0 . . . yk−1,0z1,0yk,0 . . . y2k−2,0,
y1,0 . . . yk−2,0St3(yk−1,0, yk,0, yk+1,0)yk+2,0 . . . y2k−1,0〉T ∗2 ,

2. [23, Lemma 3.10] cgrin (Ak,∗) = 1 + 2
k−2∑
j=0

(
n
j

)
(n− j) + 2

k−2∑
j=0

(
n
j

)
(n− j − 1) ≈

qnk−1, for some q > 0.

Proof. The result has already been proved for k = 2 in Lemma 2.1.6 so we consider
k ≥ 3. Let I = 〈y1,1, z1,1, z1,0z2,0, y1,0 . . . yk−2,0St3(yk−1,0, yk,0, yk+1,0)yk+2,0 . . . y2k−1,0,
y1,0 . . . yk−1,0z1,0yk,0 . . . y2k−2,0〉T ∗2 . We can check that I ⊂ Idgri(Ak,∗). Let us prove
the opposite inclusion.

Since z1,0z2,0 ∈ Idgri(Ak,∗), similarly to the proof of Lemma 2.1.6, by Remark
2.1.1, we have z1,0wz2,0 ∈ Idgri(Ak,∗) for any monomial w of F 〈X|Z2, ∗〉 in vari-
ables of homogeneous degree 0. Then, since y1,1, z1,1 ≡ 0 on Ak,∗, we must have
P gri
n1,n2,n3,n4

(Ak,∗) = {0}, if n2 > 0 or n4 > 0 or n3 ≥ 2. Thus by (1.3.1),

cgrin (Ak,∗) = cgrin,0,0,0(Ak,∗) + ncgrin−1,0,1,0(Ak,∗). (2.1.7)

Let us study the dimensions of P gri
n,0,0,0(Ak,∗) and of P gri

n−1,01,0(Ak,∗).

We start by considering P gri
n,0,0,0(Ak,∗). We claim that the following polynomials

in P gri
n,0,0,0

y1 . . . yn, yi1 · · · yit [yr, ym]yj1 · · · yjs , yp1 · · · ypu [ya, yb]yq1 · · · yqv (2.1.8)

where t < k − 1, i1 < . . . < it, r > m < j1 < . . . < js and v < k − 1, a > b < p1 <
. . . < pu, q1 < . . . < qv form a basis of P gri

n,0,0,0(Ak,∗).

In fact, let f ∈ P gri
n,0,0,0∩Idgri(Ak,∗). Since y1,0 . . . yk−1,0[yk,0, yk+1,0]yk+2,0 . . . y2k,0 ∈

I, then we can write f modulo I as a linear combination of

f = αy1,0 · · · yn,0 +
∑
t<k−1
or
s<k−1

∑
r,I,J

αr,I,Jyi1,0 · · · yit,0[yr,0, ym,0]yj1,0 · · · yjs,0

where t+ s = n− 2 and for any fixed t and s, I = {i1, . . . , it} and J = {j1, . . . , js}.
If t < k − 1 then i1 < . . . < it and r > m < j1 < . . . < js and if s < k − 1 then
r > m < i1 < . . . < it and j1 < . . . < js.

First, suppose that α 6= 0. Then by making the evaluation y1,0 = . . . = yn,0 =
e11 + e2k,2k we get α(e11 + e2k,2k) = 0 and so α = 0, a contradiction. So α = 0

Now suppose that αr,I,J 6= 0, for some t < k − 1, r, I and J . Then by making
the evaluation yi1,0 = . . . = yit,0 = E, yr,0 = e12 + e2k−1,2k and ym,0 = yj1,0 = . . . =
yjs,0 = e11 + e2k,2k we get αr,I,Je2k−t′−1,2k − αr,J,Ie1,2+t′ = 0, thus αr,I,J = αr,J,I = 0,
a contradiction. Similarly, if αr,J,I 6= 0, for some s < k − 1, r, I and J , by making
the evaluation ym = yi1,0 = . . . = yit,0 = e11 + e2k,2k, yr,0 = e12 + e2k−1,2k and
yj1,0 = . . . = yjs,0 = E we get αr,I,J = αr,J,I = 0, a contradiction as before. It
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follows that f ∈ P gri
n,0,0,0 ∩ I and these polynomials are linearly independent modulo

P gri
n,0,0,0 ∩ Idgri(Ak,∗).

Therefore, by counting, we have 1 + 2
k−2∑
j=0

(
n
j

)
(n− j − 1) polynomials in (2.1.8)

and since they are linearly independent modulo P gri
n,0,0,0 ∩ Id∗(Ak,∗) we have

1 + 2
k−2∑
j=0

(
n

j

)
(n− j − 1) ≤ cgrin,0,0,0(Ak,∗).

On the other hand, by (2.1.6) we get c∗n,0,0,0(Ak,∗) < 2 + 2
k−2∑
j=0

(
n
j

)
(n− j − 1). Thus

we conclude that c∗n,0,0,0(Ak,∗) = 1 + 2
k−2∑
j=0

(
n
j

)
(n− j − 1).

Now we consider P gri
n−1,0,1,0(Ak,∗). Since y1,0 . . . yk−1,0z1,0yk,0 . . . y2k−2,0 ∈ Idgri(Ak,∗),

then P gri
n−1,0,1,0 can be generated, modulo Idgri(Ak,∗), by the monomials

yi1,0 · · · yit,0zn,0yj1,0 · · · yjs,0 (2.1.9)

where i1 < . . . < it, j1 < . . . < js and we have t < k − 1 or s < k − 1.

Next, we show that these polynomials are linearly independent modulo Idgri(Ak,∗).
In fact, let f ∈ P gri

n−1,0,1,0 ∩ Idgri(Ak,∗) be a linear combination of the polynomials
above and write

f =
∑
t<k−1
or
s<k−1

∑
I,J

αI,Jyi1,0 · · · yit,0zn,0yj1,0 · · · yjs,0

where t + s = n − 1 and for any fixed t and s, i1 < . . . < it, j1 < . . . < js,
I = {i1, . . . , it} and J = {j1, . . . , js}.

Suppose αI,J 6= 0, for some t < k − 1, I and J . By making the evaluation, just
like in the proof of [21, Lemma 1], zn,0 = e12 − e2k−1,2k, yi1,0 = . . . = yit,0 = E
and yj1,0 = . . . = yjs,0 = e11 + e2k,2k, we get −αI,Je2k−t−1,2k + αJ,Ie1,2+t = 0, thus
αI,J = αJ,I = 0, a contradiction.

Suppose now αJ,I 6= 0, for some s < k − 1, I and J . Then the evaluations
zn,0 = e12 − e2k−1,2k, yi1,0 = . . . = yit,0 = e11 + e2k,2k and yj1,0 = . . . = yjs,0 = E
give αJ,I = 0, a contradiction. Thus we have f ∈ I and the polynomials in (2.1.9)

form a basis of P gri
n−1,0,1,0(Ak,∗). By counting, we get cgrin−1,0,1,0(Ak,∗) = 2

k−2∑
j=0

(
n−1
j

)
. So

ncgrin−1,0,1,0(Ak,∗) = 2
k−2∑
j=0

(
n
j

)
(n− j).

Finally, by the multihomogeneity of T ∗2 -ideals and by (2.1.7), we have Idgri(Ak,∗) =
I and

cgrin (Ak,∗) = 1 + 2
k−2∑
j=0

(
n

j

)
(n− j − 1) + 2

k−2∑
j=0

(
n

j

)
(n− j).
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Remark 2.1.9. Since M∗ has trivial grading, then any A ∈ vargri(M gri) also has
trivial grading. By using [21, Theorem 3] we have that if A ∈ vargri(M∗) has
polynomial growth, then

A ∼T ∗2 (B1 ⊕ . . .⊕Bm),

for some finite dimensional ∗-superalgebras Bi, 1 ≤ i ≤ m such that dim Bi
J(Bi)

≤ 1,

for all 1 ≤ i ≤ m. This means that either Bi
∼= J(Bi) is nilpotent or Bi

∼= F +J(Bi).

Next we present the classification of the minimal subvarieties of vargri(M∗). We
will omitted the proofs because of the similarity to the proof of the equivalent results
for subvarieties of vargri(M gri) that will be studied in the next section.

Theorem 2.1.10. [21, Theorem 6] Let A be a ∗-superalgebra such that vargri(A) (
vargri(M∗). Then A is T ∗2 -equivalent to one of the following ∗-superalgebras: N,
Nt,∗ ⊕ N, Ut,∗ ⊕ N, Ak,∗ ⊕ N, Nt,∗ ⊕ Ut,∗ ⊕ N, Ut,∗ ⊕ Ak,∗ ⊕ N, Nt,∗ ⊕ Ak,∗ ⊕ N,
Nt,∗ ⊕ Ut,∗ ⊕ Ak,∗ ⊕N for some k, t ≥ 2, where N is a nilpotent ∗-superalgebra and
C is a commutative algebra with trivial grading and trivial involution.

Corollary 2.1.11. [21, Corollary 1] A ∗-superalgebra A ∈ vargri(M∗) generates a
minimal variety of polynomial growth if and only if either A ∼T ∗2 Nk,∗ or A ∼T ∗2 Ut,∗
or A ∼T ∗2 Ar,∗, for some k, r ≥ 2 and t > 2.

2.2 Subvarieties of vargri(M gri)

In [12], Ioppolo and La Mattina considered the algebra M sup to be the algebra
M with superinvolution and classify all subvarieties of the variety varsup(M sup),
from a point of view of algebras with superinvolution.

A superinvolution on a superalgebra A = A(0) ⊕ A(1) is a map ∗ : A → A such
that (a∗)∗ = a for all a ∈ A and (ab)∗ = (−1)(deg a)(deg b)b∗a∗, for any homogeneous
elements a, b ∈ A. Here deg c denotes the homogeneous degree of c ∈ A(0) ∪ A(1).

Notice that if A = A(0) ⊕ A(1) is a superalgebra such that (A(1))2 = 0 then the
superinvolutions on A coincide with the graded involutions on A. In fact, suppose
that ∗ is a superinvolution on A. Given a, b ∈ A, we write a = a0 + a1, b = b0 + b1,
where a0, b0 ∈ A(0) and a1, b1 ∈ A(1). So

(ab)∗ = ((a0 + a1)(b0 + b1))∗ = (a0b0 + a0b1 + a1b0 + a1b1︸︷︷︸
0

)∗

= b∗0a
∗
0 + b∗1a

∗
0 + b∗0a

∗
1 − b∗1a∗1︸︷︷︸

0

= (b∗0 + b∗1)(a∗0 + a∗1)

= b∗a∗.

Then we have that ∗ is a graded involution on A.
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Conversely, suppose that ∗ is a graded involution on A = A(0) ⊕ A(1) such that
(A(1))2 = 0. Given a0, b0 ∈ A(0) and a1, b1 ∈ A(1) we always have

(a0b0)∗ = b∗0a
∗
0, (a0b1)∗ = b∗1a

∗
0, (a1b0)∗ = b∗0a

∗
1, (a1b1)∗ = b∗1a

∗
1 = 0 = −b∗1a∗1.

Thus we have that ∗ is a superinvolution on A.

Since M gri = M (0)⊕M (1) is a superalgebra such that (M (1))2 = 0, we conclude
that the classification of subvarieties of the superalgebra M with superinvolution
coincides with the classification of subvarieties of vargri(M gri). So the results we
present here are in agreement with the results obtained by Ioppolo and La Mattina
in [12].

The purpose of this section is to construct ∗-superalgebras belonging to the
variety generated by the algebra M gri. Notice that we can see M gri as the al-
gebra M with the reflection involution and the elementary grading induced by
g = (0, 1, 0, 1) ∈ Z4

2. By Lemma 1.2.6, recall that Idgri(M gri) = 〈z1,0, x1,1x2,1〉T ∗2 ,
where xi,1 = yi,1 or xi,1 = zi,1, for i = 1, 2.

For all k ≥ 2 we define N gri
k , U gri

k and Agrik to be the algebras Nk, Uk and Ak,
respectively, with the elementary grading induced by g = (0, 1, . . . , 1︸ ︷︷ ︸

k−1

, 0, . . . , 0︸ ︷︷ ︸
k−1

, 1) ∈

Z2k
2 and endowed with the reflection involution.

We start by considering the algebra N gri
k . Since

(N gri
k )(0) = spanF{I, E, . . . , Ek−2} and

(N gri
k )(1) = spanF{e12 − e2k−1,2k, e13, . . . , e1k, ek+1,2k, ek+2,2k, . . . , e2k−2,2k},

we can notice that (N gri
k )(0) is a commutative subalgebra of Nk and moreover z1,0 ≡ 0

in N gri
k . We also observe x1,1x2,1 ≡ 0 for xi,1 = yi,1 or xi,1 = zi,1, for i = 1, 2 are

(Z2, ∗)-identities of N gri
k . Hence, we have N gri

k ∈ vargri(M gri), for any k ≥ 2.

Similarly, we consider the algebra U gri
k , for k ≥ 2. We notice that, since

(U gri
k )(0) = spanF{I, E, . . . , Ek−2} and

(U gri
k )(1) = spanF{e12 + e2k−1,2k, e13, . . . , e1k, ek+1,2k, ek+2,2k, . . . , e2k−2,2k},

we have that z1,0 ≡ 0 and x1,1x2,1 ≡ 0 for xi,1 = yi,1 or xi,1 = zi,1, for i = 1, 2 are
(Z2, ∗)-identities of U gri

k . Then, we also have U gri
k ∈ vargri(M gri), for any k ≥ 2.

Let us start with the particular case k = 2.

Lemma 2.2.1. For the ∗-superalgebras N gri
2 and U gri

2 we have

1. Idgri(N gri
2 ) = 〈z1,0, y1,1, z1,1z2,1〉T ∗2 ,

2. Idgri(U gri
2 ) = 〈z1,0, z1,1, y1,1y2,1〉T ∗2 ,

3. cgrin (N gri
2 ) = cgrin (U gri

2 ) = 1 + n.
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Proof. Let us consider the algebra N gri
2 , the arguments are the same for U gri

2 . Let
I = 〈z1,0, y1,1, z1,1z2,1〉T ∗2 . We can easily see that I ⊂ Idgri(N gri

2 ). We shall verify the

opposite inclusion. Let f ∈ Idgri(N gri
2 ) be a multilinear polynomial. Since N gri

2 is a
unitary algebra, we can assume f a proper polynomial.

If deg f ≥ 2 then f ≡ 0, modulo I. Now if deg f = 1, so modulo I, we get
f = αz1,1. By evaluating in z1,1 = e12 − e34 we get α = 0, then f ∈ I. Hence
I = Idgri(N gri

2 ). Moreover, we have γgri0 (N gri
2 ) = γgri1 (N gri

2 ) = 1 then cgrin (N gri
2 ) =

1 + n.

We can see, by the previous lemma, that U gri
2 is a commutative algebra with

trivial involution and elementary grading induced by g = (0, 1, 1, 0) ∈ Z4
2. On the

other hand, N gri
2 is a commutative algebra with non-trivial involution and grading.

Next we describe the (Z2, ∗)-identities and ∗-graded codimensions of N gri
k and

U gri
k , for any k ≥ 3.

Lemma 2.2.2. [12, Theorem 4.4] If k ≥ 3, then
1) Idgri(N gri

k ) = 〈z1,0, x1,1x2,1, [y1,1, y1,0, . . . , yk−2,0]〉T ∗2 , where xi,1 = yi,1 or xi,1 =
zi,1, for i = 1, 2.

2) cgrin (N gri
k ) = 1 +

k−2∑
j=1

(
n
j

)
2j +

(
n
k−1

)
(k − 1) ≈ qnk−1, for some q > 0.

Proof. Let I = 〈z1,0, x1,1x2,1, [y1,1, y1,0, . . . , yk−2,0]〉T ∗2 , where xi,1 = yi,1 or xi,1 = zi,1,

for i = 1, 2. It is clear that I ⊂ Idgri(N gri
k ). We shall prove the opposite inclusion.

Let f ∈ Idgri(N gri
k ) be a multilinear polynomial. Since N gri

k is a unitary algebra, we
can assume f a proper multilinear proper. By reducing f modulo I we get:

(i) By Remark 1.2.5, for any polynomial f ∈ F 〈X|Z2, ∗〉, we have x1,1fx2,1 ∈ I.
Since [z1,1, y1,0] ∈ F 〈Y1〉, it means that for any evaluation in [z1,1, y1,0] we get an odd
symmetric element, then if deg f ≥ k, we have f ≡ 0.

(ii) If deg f = k − 1, so f is a linear combination of polynomials

[zi,1, yi1,0, . . . , yik−2,0], for i = 1, . . . , k − 1 i1, . . . , ik−2.

(iii) If deg f = s < k − 1, so f is a linear combination of polynomials

[zi,1, yi1,0, . . . , yis−1,0], [yj,1, yj1,0, . . . , yjs−1,0],

where i = 1, . . . , s, i1 < . . . < is−1 and j1 < . . . < js−1.

Hence module I, we may assume that for some 1 ≤ s ≤ k

f =
s∑
i=1

αi[zi,1, yi1,0, . . . , yis−1,0] +
s∑
i=1

βi[yi,1, yj1,0, . . . , yjs−1,0].

Suppose that there exists i such that αi 6= 0. By making the evaluation in
yj,1 = 0, for all j = 1, . . . , s, zi,1 = e12 − e2k−1,2k, zj,i = 0, for all j 6= i, yim = E, for



CHAPTER 2. THE APG NONCOMMUTATIVE ∗-SUPERALGEBRAS 38

all m = 1, . . . , s− 1, we get αi(e1,s+1 + (−1)se2k−s,2k) = 0, this implies that αi = 0,
a contradiction. Then, αi = 0, for all 1 ≤ i ≤ s.

Now, suppose that there exists j such that βj 6= 0. By evaluating in zt,i = 0,
for all t 6= j, yj,1 = e13 + e2k−2,2k, yjm = E, for all m = 1, . . . , s − 1 we get the
result βj(e1,s+2 + (−1)s+1e2k−s−1,2k) = 0, this implies that βj = 0, and this is a
contradiction. Then, βj = 0, for all 1 ≤ j ≤ s.

Hence, we get I = Idgri(N gri
k ) and we have the proper ∗-graded codimensions

γgris (N gri
k ) =


0, if s ≥ k
s, if s = k − 1
2s, if 1 ≤ s < k − 1
1, if s = 0

Then we conclude that cgrin (N gri
k ) = 1 +

k−2∑
j=1

(
n
j

)
2j +

(
n
k−1

)
(k − 1).

Similarly to the previous lemma we can prove the following results about the
(Z2, ∗)-identities and ∗-graded codimensions of U gri

k and N gri
k ⊕ U

gri
k , for k ≥ 2.

Lemma 2.2.3. [12, Theorem 4.5] If k ≥ 3, then
1) Idgri(U gri

k ) = 〈z1,0, x1,1x2,1, [z1,1, y1,0, . . . , yk−2,0]〉T ∗2 , where xi,1 = yi,1 or xi,1 = zi,1,
for i = 1, 2.

2) cgrin (U gri
k ) = 1 +

k−2∑
j=1

(
n
j

)
2j +

(
n
k−1

)
(k − 1) ≈ qnk−1, for some q > 0.

Notice that if t > k then N gri
t ⊕ U

gri
k ∼T ∗2 N

gri
t , on the other hand if t < k so

N gri
t ⊕ U

gri
k ∼T ∗2 U

gri
k .

Lemma 2.2.4. [12, Theorem 4.6] If k ≥ 2, then
1) Idgri(N gri

k ⊕ U
gri
k ) = 〈z1,0, x1,1x2,1, [x1,1, y1,0, . . . , yk−1,0]〉T ∗2 , where xi,1 = yi,1 or

xi,1 = zi,1, for i = 1, 2.

2) cgrin (N gri
k ⊕ U

gri
k ) = 1 +

k−1∑
j=1

(
n
j

)
2j ≈ qnk−1, for some q > 0.

Finally, for k ≥ 2, we consider the algebra Agrik . We notice that

(Agrik )(0) = spanF{e11 + e2k,2k, E, . . . , E
k−2} and

(Agrik )(1) = spanF{e12, e13, . . . , e1k, ek+1,2k, ek+2,2k, . . . , e2k−2,2k, e2k−1,2k},

then we also have that z1,0 ≡ 0 and x1,1x2,1 ≡ 0 for xi,1 = yi,1 or xi,1 = zi,1, for
i = 1, 2 are (Z2, ∗)-identities of U gri

k . Hence, for any k ≥ 2, Agrik ∈ vargri(M gri).

The result about the (Z2, ∗)-identities and ∗-graded codimensions of Agrik is the
following.
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Lemma 2.2.5. [12, Theorem 5.1] Let k ≥ 2. Then
1) Idgri(Agrik ) = 〈z1,0, x1,1x2,1, y1,0 · · · yk−1,0x1,1yk,0 · · · y2k−2,0〉T ∗2 where xi = yi or xi =
zi, for i = 1, 2.

2) cgrin (Agrik ) = 1 + 4
k−2∑
j=0

(
n
j

)
(n− j) ≈ qnk−1, for some q > 0.

Proof. Let R = 〈z1,0, x1,1x2,1, y1,0 · · · yk−1,0x1,1yk,0 · · · y2k−2,0〉T ∗2 where xi,1 = yi,1 or

xi,1 = zi,1, for i = 1, 2. We have R ⊂ Idgri(Agrik ) and we shall verify the opposite
inclusion. Let f ∈ Idgri(Agrik ) , we may assume f a multilinear polynomial of degree
n. By Remark 1.2.5, we have x1,1fx2,1 ∈ R. Then, modulo R, we have that f is a
linear combination of the polynomials

y1,0 · · · yn,0, yi1,0 · · · yir,0yl,1yj1,0 · · · yjs,0, yp1,0 · · · ypu,0zt,1yq1,0 · · · yqv ,0, (2.2.1)

with r + s = u + v = n− 1, 1 ≤ l, t ≤ n, i1 < . . . < ir, j1 < . . . < js, p1 < . . . < pu
and q1 < . . . < qv.

So, we write f as a linear combination of the polynomials in (2.2.1)

f = δy1,0 · · · yn,0 +
∑

r<k−1
or
s<k−1

∑
I,J,l

αI,J,lyi1,0 · · · yir,0yl,1yj1,0 · · · yjs,0

+
∑

u<k−1
or
v<k−1

∑
P,Q,t

βP,Q,typ1,0 · · · ypu,0zt,1yq1,0 · · · yqv ,0,

where I = {i1, . . . , ir}, J = {j1, . . . , js}, P = {p1, . . . , pu} and Q = {q1, . . . , qv}.

First, suppose δ 6= 0. By making the evaluation yi,0 = e11 + e2k,2k and yl,1 =
zt,1 = 0, for all 1 ≤ i, l, t ≤ n, we get δ(e11 + e2k,2k) = 0, a contradiction. So we must
have δ = 0.

Suppose αI,J,l 6= 0, for some fixed r < k − 1, I, J, l. By making the evaluation
zt,1 = 0, for all 1 ≤ t ≤ n, yj,1 = 0, for all j 6= l, yl,1 = e12 + e2k−1,2k, yi1,0 =
. . . = yir,0 = E and yj1,0 = . . . = yjs,0 = e11 + e2k,2k we get that αI,J,le2k−r−1,2k +
αJ,I,le1,r+2 = 0 implies αI,J,l = αJ,I,l = 0, a contradiction. Similarly, if αI,J,l 6= 0, for
some fixed s < k − 1, I, J, l. By making the evaluation zt,1 = 0, for all 1 ≤ t ≤ n,
yj,1 = 0, for all j 6= l, yl,1 = e12 + e2k−1,2k, yi1,0 = . . . = yir,0 = e11 + e2k,2k and
yj1,0 = . . . = yjs,0 = E we get αI,J,l = 0, a contradiction. Then we must have
αI,J,l = 0, for all I, J, l.

In a similar way, we may prove that the coefficients βP,Q,t = 0, for all P,Q, t.

Hence, we conclude that I = Idgri(Agrik ) and the polynomials in (2.2.1) are
linearly independent modulo Idgri(Agrik ). By counting those polynomials, we have

cgrin (Agrik ) = 1 + 4
k−2∑
j=0

(
n

j

)
(n− j).
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Next we shall prove that N gri
k , U gri

k and Agrik generate minimal varieties of
polynomial growth.

Remark 2.2.6. In [12, Corollary 4.3], Ioppolo and La Mattina proved that if A ∈
vargri(M gri) is a ∗-superalgebra over an algebraically closed field F , then vargri(A) =
vargri(B), for some finite dimensional ∗-superalgebra B.

As a consequence of this result and of Theorem 1.4.4 we have that if A ∈
vargri(M gri) has polynomial growth then A ∼T ∗2 (B1 ⊕ . . . ⊕ Bm), for some finite

dimensional ∗-superalgebrasBi, 1 ≤ i ≤ m such that dim Bi
J(Bi)

≤ 1, for all 1 ≤ i ≤ m.

This means that either Bi
∼= J(Bi) is nilpotent or Bi

∼= F + J(Bi).

Remark 2.2.7. Let A = F + J00 + J10 + J01 + J11 be a ∗-superalgebra. If A satisfies
the ordinary identity [x1, . . . , xt] for some t ≥ 2, then J10 = J01 = 0.

Proof. The proof is trivial, just notice that [J10, F, . . . , F︸ ︷︷ ︸
t−1

] = J10 and [J01, F, . . . , F︸ ︷︷ ︸
t−1

] =

J01. Hence J10 = J01 = 0 and A = (F + J11)⊕ J00.

Theorem 2.2.8. [12, Theorem 4.7 and Theorem 4.8] For all k ≥ 2, N gri
k and U gri

k

generate minimal varieties of polynomial growth.

Proof. We shall prove for N gri
k and the proof of the result is similar for U gri

k .

We start by considering k = 2. Let A ∈ vargri(N gri
2 ) such that cgrin (A) ≈ qn,

for some q > 0. By Remark 2.2.6, we may assume A = B1 ⊕ · · · ⊕ Bm such that

dimF Bi <∞ and dimF
Bi

J(Bi)
≤ 1. Since

cgrin (A) ≤ cgrin (B1) + · · ·+ cgrin (Bm),

then there exists Bi such that cgrin (Bi) ≈ bn, for some b > 0. We have that N gri
2

satisfies the ordinary identity [x1, x2], then by Remark 2.2.7, we get J10(Bi) = 0 and
J01(Bi) = 0. Hence F + J(Bi) = (F + J11(Bi)) ⊕ J00(Bi) and, for n large enough,
we have cgrin (F + J(Bi)) = cgrin (F + J11(Bi)). In order to show that A ∼T ∗2 N

gri
2 , it

is enough to verify that F + J11(Bi) ∼T ∗2 N gri
2 , so we assume that A is a unitary

algebra.

Since cgrin (A) ≈ bn, we get cgrin (A) = 1 + nγgri1 (A), with γgri1 (A) 6= 0. Since
Idgri(N gri

2 ) ⊆ Idgri(A), we have γgri1 (A) ≤ γgri1 (N gri
2 ). By Lemma 2.2.1, we conclude

that γgri1 (A) = γgri1 (N gri
2 ) = 1. Hence cgrin (A) = cgrin (N gri

2 ), for all n = 0, 1, 2, . . ..
Then we have A ∼T ∗2 N

gri
2 .

Now we consider k ≥ 3. Let A ∈ vargri(N gri
k ) such that cgrin (A) ≈ qnk−1, for some

q > 0, we shall prove that A ∼T ∗2 N
gri
k . By using the same arguments of the first part,

there exists Bi such that cgrin (Bi) ≈ bnk−1, for some b > 0. Since N gri
k satisfies the

ordinary identity [x1, . . . , xk], by Remark 2.2.7 we get F + J(Bi) = (F + J11(Bi))⊕
J00(Bi) and, for n large enough, we have cgrin (F + J(Bi)) = cgrin (F + J11(Bi)). Thus
we may assume that A is a unitary algebra, without loss of generality.
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Since cgrin (A) ≈ bnk−1, we get cgrin (A) =
k−1∑
i=0

(
n
i

)
γgrii (A) and γgrii (A) 6= 0 for all

0 ≤ i ≤ k − 1, by Lemma 1.3.7.

Now, since Idgri(N gri
k ) ⊂ Idgri(A), we have that Γgrin

Γgrin ∩Idgri(A)
is isomorphic to a

quotient module of Γgrin

Γgrin ∩Idgri(Ngri
k )

. Then, if ψgrii (A) =
∑
〈λ〉`im〈λ〉χ〈λ〉 and ψgrii (N gri

k ) =∑
〈λ〉`im

′
〈λ〉χ〈λ〉 are the i-th proper ∗-graded cocharacters of A and N gri

k , respectively,

we must have m〈λ〉 ≤ m′〈λ〉, for all 〈λ〉 ` i and 0 ≤ i ≤ k − 1.

For 〈λ〉 = (∅,∅,∅,∅) ` 0, 〈λ〉 = (∅, (1),∅,∅) ` 1 and 〈λ〉 = (∅,∅,∅, (1)) ` 1,
we have m〈λ〉 = m′〈λ〉 = 1. Now for each i = 2, . . . , k − 2, let f1 = [z1,1, y1,0, . . . , y1,0︸ ︷︷ ︸

i−1

]

and f2 = [y1,1, y1,0, . . . , y1,0︸ ︷︷ ︸
i−1

] be the highest weight vectors corresponding to the par-

titions 〈λ〉 = ((i− 1),∅,∅, (1)) and 〈λ〉 = ((i− 1), (1),∅,∅), respectively. We have
f1, f2 /∈ Idgri(N gri

k ), for all i = 1, . . . , k−2. Moreover, we have that [z1,1, y1,0, . . . , y1,0︸ ︷︷ ︸
k−2

]

is a highest weight vector corresponding to 〈λ〉 = ((k − 2),∅,∅, (1)) which is not a
∗-graded identity of N gri

k .

Then, for all i = 1, . . . , k − 2 we have that χ((i−1),∅,∅,(1)), χ((i−1),(1),∅,∅) and
χ((k−2),∅,∅,(1)) appear in the decomposition of the i-th proper ∗-graded cocharacters

of N gri
k with non-zero multiplicities. Since

γgrik−1(N gri
k ) = k − 1 = deg χ((k−2),∅,∅,(1)) and

γgrii (N gri
k ) = 2i = deg χ((i−1),∅,∅,(1)) + deg χ((i−1),(1),∅,∅),

for all 1 ≤ i ≤ k − 2, we obtain ψgrii (N gri
k ) = χ((i−1),∅,∅,(1)) + χ((i−1),(1),∅,∅), for all

1 ≤ i ≤ k − 2, and ψgrik−1(N gri
k ) = χ((k−2),∅,∅,(1)).

Hence, since γgrik−1(A) 6= 0, we also get ψgrik−1(A) = χ((k−2),∅,∅,(1)). Moreover,

for all 1 ≤ i ≤ k − 2, we must have ψgrii (A) = χ((i−1),∅,∅,(1)) + χ((i−1),(1),∅,∅). In

fact, suppose ψgrii (A) = χ((i−1),(1),∅,∅), for some 1 ≤ i ≤ k − 2, this implies that

[z1,1, y1,0, . . . , y1,0︸ ︷︷ ︸
i−1

] ∈ Idgri(A) and so [z1,1, y1,0, . . . , y1,0︸ ︷︷ ︸
k−1

] ∈ Idgri(A), thus γgrik−1(A) = 0,

a contradiction. Similarly, if ψgrii (A) = χ((i−1),∅,∅,(1)) for some 1 ≤ i ≤ k − 2, then
[y1,1, y1,0, . . . , y1,0︸ ︷︷ ︸

i−1

] ∈ Idgri(A). Now, notice that [z1,1, y1,0] ∈ F 〈Y1〉, so we also have

[z1,1, y1,0, . . . , y1,0︸ ︷︷ ︸
k−1

] ∈ Idgri(A) and γgrik−1(A) = 0, a contradiction.

Thus we must have ψgrii (A) = χ((i−1),∅,∅,(1)) +χ((i−1),(1),∅,∅), for all 1 ≤ i ≤ k− 2,

and ψgrik−1(A) = χ((k−2),∅,∅,(1)). Hence, for all n ≥ 1 we get

cgrin (A) =
k−1∑
i=0

(
n

i

)
γgrii (A) = 1 +

k−2∑
j=1

(
n

j

)
2j +

(
n

k − 1

)
(k − 1) = cgrin (N gri

k ),
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and, since Idgri(N gri
k ) ⊆ Idgri(A), we conclude that Idgri(N gri

k ) = Idgri(A).

Next we prove that Agrik generates a minimal variety of polynomial growth.

Remark 2.2.9. Let A = F + J ∈ vargri(Agrik ) with J = J00 ⊕ J10 ⊕ J01 ⊕ J11. Then

J
(1)
11 = 0.

Proof. In fact, since y1,0 · · · yk−1,0 x1,1 yk,0 · · · y2k−2,0 ∈ Idgri(Agrik ), where x1,1 = y1,1

or x1,1 = z1,1, we notice that

F . . . F︸ ︷︷ ︸
k−1

(J
(1)
11 )+ F . . . F︸ ︷︷ ︸

k−1

= (J
(1)
11 )+ = 0 and F . . . F︸ ︷︷ ︸

k−1

(J
(1)
11 )− F . . . F︸ ︷︷ ︸

k−1

= (J
(1)
11 )− = 0.

Hence J
(1)
11 = 0.

Theorem 2.2.10. [12, Theorem 5.2] For all k ≥ 2, Agrik generates a minimal variety
of polynomial growth.

Proof. Let A = F + J be a ∗-superalgebra with J10 6= 0 (hence J01 6= 0) such that
A ∈ vargri(Agrik ) with cgrin (A) ≈ qnk−1, for some q > 0. We claim that A ∼T ∗2 A

gri
k .

By the previous remark, we have A = F + J00 ⊕ J10 ⊕ J01 ⊕ J11 with J
(1)
11 = 0.

Suppose that J10((J
(0)
00 )+)k−2 = 0, it also says that ((J

(0)
00 )+)k−2J01 = 0. We claim

that if Jm = 0 then for all n ≥ m, the polynomials

f1 = yi1,0 · · · yit,0y1,0 · · · yk−2,0 y1,1 yk,0 · · · y2k−4,0yj1,0 · · · yjl,0,

f2 = yi1,0 · · · yit,0y1,0 · · · yk−2,0 z1,1 yk,0 · · · y2k−4,0yj1,0 · · · yjl,0,

with t+ l + 2k − 3 = n are (Z2, ∗)-identities of A.

In fact, since f1 and f2 are multilinear polynomials, it is enough to evaluate
the variables on a basis of A which is the union of a basis of J00, J10, J01, J11 and
1F . Since Jm = 0, if we evaluate all variables in J , we get fi ≡ 0, i = 1, 2. So,
at least one variable must be evaluated in 1F . Now, since (J

(1)
11 )+ = (J

(1)
11 )− = 0,

we need to evaluate the variables y1,1 and z1,1 in J10 + J01. We can see that, since

J10((J
(0)
00 )+)k−2 = 0 and ((J

(0)
00 )+)k−2J01 = 0, we get fi ≡ 0, i = 1, 2, for all evaluation

in A. Thus, f1, f2 ∈ Idgri(A).

Let I ⊆ Idgri(Agrik ) be the T ∗2 -ideal generated by f1, f2 plus the generators of
the T ∗2 -ideal Idgri(Agrik ). For any n ≥ m, the following set of polynomials

{y1,0 · · · yn,0} ∪ {yi1,0 · · · yir,0yl,1yj1,0 · · · yjs,0, yi1,0 · · · yir,0zl,1yj1,0 · · · yjs,0}
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where r < k − 2 or s < k − 2, i1 < . . . < ir, j1 < . . . < js and 1 ≤ l ≤ n, generate
P gri
n (mod P gri

n ∩ Idgri(I)). Thus

cgrin (A) ≤ 1 + 4
k−3∑
j=0

(
n

j

)
(n− j) ≈ bnk−2,

for some b > 0, a contradiction.

Hence, we must have J10((J
(0)
00 )+)k−2 6= 0 and also ((J

(0)
00 )+)k−2J01 6= 0. Let

a ∈ J10, b1, . . . , bk−2 ∈ (J0
00)+ be such that ab1 · · · bk−2 6= 0, then we also have

b∗k−2 · · · b∗1a∗ 6= 0 with a∗ ∈ J01, b
∗
1, . . . , b

∗
k−2 ∈ (J0

00)+.

Let f ∈ Idgri(A) be a multilinear polynomial of degree n. By Lemma 2.2.5, we
can write f , modulo Idgri(Agrik ), like:

f = δy1,0 · · · yn,0 +
∑

r<k−1
or
s<k−1

∑
I,J,l

αI,J,lyi1,0 · · · yir,0yl,1yj1,0 · · · yjs,0

+
∑

u<k−1
or
v<k−1

∑
P,Q,t

βP,Q,typ1,0 · · · ypu,0zt,1yq1,0 · · · yqv ,0,

where I = {i1, . . . , ir}, J = {j1, . . . , js}, P = {p1, . . . , pu} and Q = {q1, . . . , qv}.

By evaluating yi,0 = e11 + e2k,2k and yl,1 = zt,1 = 0, for all 1 ≤ i, l, t ≤ n, we get
δ(e11 + e2k,2k) = 0. So, we must have δ = 0.

Fixed s < k − 1, I, J, l. By making the evaluation zt,1 = 0, for 1 ≤ t ≤ n,
yj,1 = 0, for all j 6= l, yl,1 = a + a∗, yjp,0 = bp, for 1 ≤ p ≤ s and yim,0 = 1F , for
1 ≤ m ≤ r, we get αI,J,lab1 · · · bs + αJ,I,lb1 · · · bsa∗ = 0. Since ab1 · · · bs ∈ J10 and
b1 · · · bsa∗ ∈ J01 are non-zero and linearly independent, this implies αI,J,l = αJ,I,l =
0. Similarly, fixed r < k − 1, I, J, l. By making the evaluation zt,1 = 0, for all
1 ≤ t ≤ n, yj,1 = 0, for all j 6= l, yl,1 = a + a∗, yjp,0 = 1F , for 1 ≤ p ≤ s and
yir−m,0 = b∗m+1, for 0 ≤ m ≤ r−1, we get αI,J,lb

∗
r · · · b∗1a∗+αJ,I,lab

∗
r · · · b∗1 = 0. Again,

since ab∗r · · · b∗1 ∈ J10 and b∗r · · · b∗1a∗ ∈ J01 are non-zero and linearly independent, this
also implies αI,J,l = 0. Then we must have αI,J,l = 0, for all I, J, l.

Now fixed v < k − 1, P,Q, t. By making the evaluation zj,1 = 0, for all j 6= t,
zt,1 = a − a∗, yqi,0 = bi, for 1 ≤ 1 ≤ v and ypm,0 = 1F , for 1 ≤ m ≤ u, we get
βP,Q,tab1 · · · bv + βP,Q,tb1 · · · bva∗ = 0, then it implies βP,Q,t = βP,Q,t = 0. Similarly,
fixed u < k − 1, I, J, l. By making the evaluation zt,1 = 0, for all j 6= t, zt,1 =
a − a∗, yqi,0 = 1F , for 1 ≤ 1 ≤ v and ypu−m,0 = b∗m+1, for 0 ≤ m ≤ u − 1, we get
βP,Q,tb

∗
u · · · b∗1a∗ + βP,Q,tab

∗
u · · · b∗1 = 0, then it implies βP,Q,t = βP,Q,t = 0. Then we

must have βP,Q,t = 0, for all P,Q, t.

Thus, we conclude that I = Idgri(Agrik ) and, hence, Idgri(A) = Idgri(Agrik ).

Now, we consider A ∈ vargri(Agrik ) such that cgrin (A) ≈ qnk−1, for some q > 0, in
general case. By Remark 2.2.6 we may assume A = B1⊕· · ·⊕Bm, where B1, . . . , Bm

are finite dimensional ∗-superalgebras such that dimF
Bi

J(Bi)
≤ 1. since

cgrin (A) ≤ cgrin (B1) + · · ·+ cgrin (Bm),
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then there exists Bi such that cgrin (Bi) ≈ bnk−1, for some b > 0, with Bi
∼= F+J(Bi).

Hence, since Bi ∈ vargri(Agrik ) we get Bi ∼T ∗2 Agrik , according to the result of the
first part of the proof.

Thus, we have

vargri(Agrik ) = vargri(Bi) ⊆ vargri(A) ⊆ vargri(Agrik ).

Hence, we conclude that A ∼T ∗2 A
gri
k .

The next result presents the classification up to T ∗2 -equivalence of all unitary
∗-superalgebras that generate a proper subvariety of vargri(M gri).

Lemma 2.2.11. Let A ∈ varM gri be a unitary ∗-superalgebra that generates a
proper subvariety of vargri(M gri). Then either A ∼T ∗2 C or A ∼T ∗2 N

gri
k or A ∼T ∗2

U gri
k or A ∼T ∗2 N

gri
k ⊕ U

gri
k , for some k ≤ 2, where C is a commutative algebra with

trivial grading and trivial involution.

Proof. By Corollary 1.4.10, M gri has almost polynomial growth, then if A generates
a proper subvariety of vargri(M gri) so we have, for some k ≥ 1,

cgrin (A) =
k−1∑
i=0

(
n

i

)
γgrii (A) ≈ ank−1.

If k = 1, then Γ1 ⊆ Idgri(A). Thus we have z1,0 ≡ y1,1 ≡ z1,1 ≡ 0 in A. Hence A ∼T ∗2
C, where C is a commutative algebra with trivial grading and trivial involution.

If we assume k = 2, then we have γgri2 (A) = 0 and so Γgri2 ⊆ Idgri(A). Since
A ∈ vargri(M gri), we have z1,0 ≡ 0 in A. So we have three cases to consider:

(i) y1,1 ∈ Idgri(A) and z1,1 /∈ Idgri(A). Then Idgri(N gri
2 ) ⊆ Idgri(A), by Lemma

2.2.1. Since N gri
2 generates a minimal variety and cgrin (A) ≈ an, by Theorem 2.2.8,

thus we have A ∼T ∗2 N
gri
2 .

(ii) y1,1 /∈ Idgri(A) and z1,1 ∈ Idgri(A). We get Idgri(U gri
2 ) ⊆ Idgri(A), by

Lemma 2.2.1. Since U gri
2 generates a minimal variety and cgrin (A) ≈ an, by Theorem

2.2.8, thus we have A ∼T ∗2 U
gri
2 .

(iii) y1,1, z1,1 /∈ Idgri(A). Since cgrin (A) ≈ an and Γgri2 ⊂ Idgri(A), in particular
[y1,1, y1,0] and [z1,1, y1,0] are (Z2, ∗)-identities of A. Then, by Lemma 2.2.4, we get
Idgri(N gri

2 ⊕U
gri
2 ) ⊆ Idgri(A). It is clear that γgri1 (A) = 2 and so cgrin (A) = 1 + 2n =

cgrin (N gri
2 ⊕ U gri

2 ), for all n ≥ 0. Hence A ∼T ∗2 N
gri
2 ⊕ U gri

2 .

Suppose now k ≥ 3. Since γgrik−1(A) 6= 0, at least one of the polynomials
[y1,1, y1,0, . . . , yk−2,0] and [z1,1, y1,0, . . . , yk−2,0] is not a (Z2, ∗)-identity of A.

First, if [y1,1, y1,0, . . . , yk−2,0] ∈ Idgri(A) and [z1,1, y1,0, . . . , yk−2,0] /∈ Idgri(A),
then Idgri(N gri

k ) ⊆ Idgri(A), by Lemma 2.2.2. Since N gri
k generates a minimal

variety, by Lemma 2.2.8 and cgrin (A) ≈ ank−1, thus we have A ∼T ∗2 N
gri
k .
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Now, if [y1,1, y1,0, . . . , yk−2,0] /∈ Idgri(A) and [z1,1, y1,0, . . . , yk−2,0] ∈ Idgri(A),
then it implies that Idgri(U gri

k ) ⊆ Idgri(A), by Lemma 2.2.3. Since U gri
k generates a

minimal variety, by Lemma 2.2.8 and cgrin (A) ≈ ank−1, then we conclude A ∼T ∗2 U
gri
k .

Finally, suppose [y1,1, y1,0, . . . , yk−2,0], [z1,1, y1,0, . . . , yk−2,0] /∈ Idgri(A). Since
γgrik (A) = 0, then all proper polynomial of degree k lies in Idgri(A), in particu-
lar [y1,1, y1,0, . . . , yk−1,0], [z1,1, y1,0, . . . , yk−1,0] ∈ Idgri(A). By Lemma 2.2.4, we get
Idgri(N gri

k ⊕ U
gri
k ) ⊆ Idgri(A). Let us prove the opposite inclusion.

For each i = 1, . . . , k− 1, let f1 = [z1,1, y1,0, . . . , y1,0︸ ︷︷ ︸
i−1

] and f2 = [y1,1, y1,0, . . . , y1,0︸ ︷︷ ︸
i−1

]

be the highest weight vectors corresponding to the partitions 〈λ〉1 = ((i−1),∅,∅, (1))
and 〈λ〉2 = ((i − 1),∅, (1),∅), respectively. Since f1, f2 /∈ Idgri(N gri

k ⊕ U gri
k ),

we have that χ〈λ〉1 and χ〈λ〉2 effectively appear in the decomposition of the i-th

proper ∗-graded cocharacters of N gri
k ⊕U

gri
k with non-zero multiplicities. Now, since

γgrii (N gri
k ⊕ U

gri
k ) = 2i = deg χ〈λ〉1 + deg χ〈λ〉2 , we have for all i = 1, . . . , k − 1

ψgrii (N gri
k ⊕ U

gri
k ) = χ((i−1),∅,∅,(1)) + χ((i−1),∅,(1),∅).

If ψgrii (A) =
∑
〈λ〉`im〈λ〉χ〈λ〉 and ψgrii (N gri

k ⊕U
gri
k ) =

∑
〈λ〉`im

′
〈λ〉χ〈λ〉 are respec-

tively the i-th proper ∗-graded cocharacters of A and N gri
k ⊕ U

gri
k , so we must have

for all 〈λ〉 ` i and 0 ≤ i ≤ k − 1, m〈λ〉 ≤ m′〈λ〉. Moreover, we must have

ψgrii (A) = χ((i−1),∅,∅,(1)) + χ((i−1),∅,(1),∅),

for all i = 1, . . . , k − 1, since [y1,1, y1,0, . . . , yk−2,0] and [z1,1, y1,0, . . . , yk−2,0] are not
(Z2, ∗)-identities of A. Then, for all n ≥ 0, we get

cgrin (A) =
k−1∑
i=0

(
n

i

)
γgrii (A) = 1 +

k−1∑
j=1

(
n

j

)
2j = cgrin (N gri

k ⊕ U
gri
k ).

Hence Idgri(N gri
k ⊕ U

gri
k ) = Idgri(A) and so A ∼T ∗2 N

gri
k ⊕ U

gri
k .

The classification of all proper subvarieties of the variety generated by M gri is
given by the following.

Theorem 2.2.12. [12, Theorem 5.3] Let A be a ∗-superalgebra such that vargri(A) (
vargri(M gri). Then A is T ∗2 -equivalent to one of the following ∗-superalgebras:
N, C ⊕ N, N gri

t ⊕ N, U gri
t ⊕ N, Agrik ⊕ N, U gri

t ⊕ N gri
t ⊕ N, U gri

t ⊕ Agrik ⊕ N,
N gri
t ⊕ Agrik ⊕ N, U gri

t ⊕ N gri
t ⊕ Agrik ⊕ N for some k, t ≥ 2, where N is a nilpo-

tent ∗-superalgebra and C is a commutative algebra with trivial grading and trivial
involution.

Corollary 2.2.13. A ∗-superalgebra A ∈ vargri(M gri) generates a minimal variety
of polynomial growth if and only if either A ∼T ∗2 N

gri
k or A ∼T ∗2 U

gri
k or A ∼T ∗2 A

gri
k ,

for some k ≥ 2.
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2.3 The ∗-graded cocharacter of the minimal sub-

varieties

In this section, we explicit the sequences of ∗-graded cocharacters and of ∗-
graded colengths of the minimal varieties vargri(A) ⊆ vargri(M∗) and vargri(A) ⊆
vargri(M gri).

The results about the minimal subvarieties lying in vargri(M∗) are in a joint work
with La Mattina and Vieira [23] which was recently submitted for publication in the
language of ∗-varieties. Here we restate such results in ∗-superalgebra language.

We prove all theorems by using induction on k, so for each class of algebras
Nk,∗, Uk,∗ and Ak,∗ we start with a lemma about the sequence of the ∗-graded cochar-
acters in a particular case.

We start by the study of ∗-cocharacters and of ∗-colengths of the minimal
varieties vargri(Ak,∗), for k ≥ 2.

Lemma 2.3.1. For the ∗-superalgebra A2,∗, we have

1. χgrin (A2,∗) = χ(n),∅,∅,∅ + 2χ(n−1,1),∅,∅,∅ + 2χ(n−1),∅,(1),∅,

2. lgrin (A2,∗) = 5.

Proof. By Lemma 2.1.6, it is known that cgrin (A2,∗) = 4n− 1 and notice that

d(n),∅,∅,∅ + 2d(n−1),∅,(1),∅ + 2d(n−1,1),∅,∅,∅ = 1 + 2n+ 2(n− 1) = cgrin (A2,∗).

Then, since m(n),∅,∅,∅ = 1, if we find two linearly independent highest weight vectors
for each pair of partitions ((n− 1),∅, (1),∅) and ((n− 1, 1),∅,∅,∅) which are not
identities of A2,∗, we may conclude that χgrin (A2,∗) has the wished decomposition.

In fact, let us consider the following highest weight vectors associated to the
multipartition ((n− 1),∅, (1),∅) and their corresponding multitableaux:

( 1 2 · · · n− 2 n− 1 , ∅ , n , ∅ ) and f1 = yn−1
1,0 z1,0 (2.3.1)

( 2 3 · · · n− 1 n , ∅ , 1 , ∅ ) and f2 = z1,0y
n−1
1,0 . (2.3.2)

It is clear that, by making the evaluation y1,0 = e11 + e44 and z1,0 = e12 − e34,
we get f1 = e12 6= 0 and f2 = −e34 6= 0. This implies that f1 and f2 are not
(Z2, ∗)-identities of A2,∗. Moreover by making the same evaluation we have that
αf1 + βf2 = 0 implies α = β = 0, so these polynomials are linearly independent
modulo Idgri(A2,∗).

On the other hand, consider the following highest weight vectors associated to
the multipartition ((n− 1),∅, (1),∅) and their corresponding multitableaux:(

1 3 · · · n

2
, ∅ , ∅ , ∅

)
and g1 = [y1,0, y2,0]yn−2

1,0 (2.3.3)



CHAPTER 2. THE APG NONCOMMUTATIVE ∗-SUPERALGEBRAS 47(
n− 1 1 · · · n− 2

n
, ∅ , ∅ , ∅

)
and g2 = yn−2

1,0 [y1,0, y2,0]. (2.3.4)

By making the evaluation y1,0 = e11 + e44 and y2,0 = e12 + e34, we get g1 =
−e34 6= 0 and g2 = e12 6= 0. This shows that g1 and g2 are not (Z2, ∗)-identities
of A2,∗ and by making the same evaluation we have that αg1 + βg2 = 0 implies
α = β = 0, so these polynomials are linearly independent modulo Idgri(A2,∗).

Thus, we finally have χgrin (A2,∗) = χ(n),∅,∅,∅ + 2χ(n−1),∅,(1),∅ + 2χ(n−1,1),∅,∅,∅ and
lgrin (A2,∗) = 5.

Before giving the decomposition of χgrin (Ak,∗), for any k ≥ 2, we prove the
following.

Remark 2.3.2. Let k ≥ 2. Then

cgrin (Ak,∗) = d(n),∅,∅,∅ +
k−1∑
j=1

2(k − j)d(n−j,j),∅,∅,∅ +
k−2∑
j=1

2(k − j − 1)d(n−j−1,j,1),∅,∅,∅

+
k−2∑
j=0

2(k − j − 1)d(n−j−1,j),∅,(1),∅.

Proof. We will use induction on k. By Lemma 2.3.1, we have

χgrin (A2,∗) = χ(n),∅,∅,∅ + 2χ(n−1,1),∅,∅,∅ + 2χ(n−1),∅,(1),∅,

this implies that the result is true for k = 2.

Now we suppose the result is true for some k ≥ 2. By Lemma 2.1.8, we have
the following

cgrin (Ak+1,∗) = cgrin (Ak,∗) + 2
(
n
k−1

)
(n− k) + 2

(
n
k−1

)
(n− k + 1)

= cgrin (Ak,∗) + 2
k∑
j=1

d(n−j,j),∅,∅,∅ + 2
k−1∑
j=1

d(n−j−1,j,1),∅,∅,∅ + 2
k−1∑
j=0

d(n−j−1,j),∅,(1),∅

= d(n),∅,∅,∅ +
k∑
j=1

2(k + 1− j)d(n−j,j),∅,∅,∅ +
k−1∑
j=1

2(k − j)d(n−j−1,j,1),∅,∅,∅

+
k−1∑
j=0

2(k − j)d(n−j−1,j),∅,(1),∅

by using
k∑
j=1

d(n−j,j),∅,∅,∅+
k−1∑
j=1

d(n−j−1,j,1),∅,∅,∅ =
(
n
k−1

)
(n−k) and

k−1∑
j=0

d(n−j−1,j),∅,(1),∅ =(
n
k−1

)
(n− k + 1). Thus, the result is true for any k ≥ 2.

We will adopt the convention where the symbols ¯, ¯̄ and ˜ indicate alternation
on a given set of variables in the next lemmas. Thus, for instance, the notation
¯̄y1ȳ1ỹ1y4ȳ2 ¯̄y2ỹ2ȳ3 indicates the polynomial∑

σ∈S3
ρ,τ∈S2

(signρ)(signσ)(signτ)yρ(1)yσ(1)yτ(1)y4yσ(2)yρ(2)yτ(2)yσ(3).
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Theorem 2.3.3. For k ≥ 2, we have

1. χgrin (Ak,∗) = χ(n),∅,∅,∅+
k−1∑
j=1

2(k−j)χ(n−j,j),∅,∅,∅+
k−2∑
j=1

2(k−j−1)χ(n−j−1,j,1),∅,∅,∅

+
k−2∑
j=0

2(k − j − 1)χ(n−j−1,j),∅,(1),∅,

2. lgrin (Ak,∗) = 3k2 − 5k + 3.

Proof. By the previous remark, we have, for any k ≥ 2,

cgrin (Ak,∗) = d(n),∅,∅,∅ +
k−1∑
j=1

2(k − j)d(n−j,j),∅,∅,∅ +
k−2∑
j=1

2(k − j − 1)d(n−j−1,j,1),∅,∅,∅

+
k−2∑
j=0

2(k − j − 1)d(n−j−1,j),∅,(1),∅.

It is clear that m(n),∅,∅,∅ = 1. In order to prove the wished decomposition for
χgrin (Ak,∗), we shall prove that the irreducible characters χ(n−j,j),∅,∅,∅, χ(n−l−1,l,1),∅,∅,∅
and χ(n−t−1,t),∅,(1),∅, for 1 ≤ j ≤ k − 1, 1 ≤ l ≤ k − 2 and 0 ≤ t ≤ k − 2, appear
in the decomposition of the cocharacter χgrin (Ak,∗) with multiplicity m(n−j,j),∅,∅,∅ =
2(k− j), m(n−l−1,l,1),∅,∅,∅ = 2(k− l− 1) and m(n−t−1,t),∅,(1),∅ = 2(k− t− 1), respec-
tively.

(i) For the multipartition ((n− 1, 1),∅,∅,∅), for any 0 ≤ p ≤ k− 2 we consider
the following pairs of multitableaux:

(
p+ 1 1 · · · p p+ 3 · · · n

p+ 2
, ∅ , ∅ , ∅

)
(

n− p− 1 1 · · · n− p− 2 n− p+ 1 · · · n

n− p , ∅ , ∅ , ∅
)

and their corresponding highest weight vectors, respectively,

fp = yp1,0[y1,0, y2,0]yn−p−2
1,0 and gp = yn−p−2

1,0 [y1,0, y2,0]yp1,0.

By making the evaluation y1,0 = e11 + e2k,2k +E and y2,0 = e12 + e2k−1,2k, we get

fp(y1,0, y2,0) = e2k−p−2,2k − e2k−p−1,2k and gp(y1,0, y2,0) = e1,p+2 − e1,p+3.

Then, fp and gp are not (Z2, ∗)-identities of Ak,∗, for any 0 ≤ p ≤ k − 2, and
these 2(k − 1) polynomials are linearly independent modulo Idgri(Ak,∗). Hence
m(n−1,1),∅,∅,∅ ≥ 2(k − 1).

(ii) Fixed 2 ≤ j ≤ k − 1, for the multipartition ((n − j, j),∅,∅,∅) and for
0 ≤ p ≤ k − j − 1 and w = n− p, we consider the following pairs of multitableaux:
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(
p+ 1 p+ 2 · · · p+ j 1 · · · p p+ 2j + 1 · · · n

p+ j + 1 p+ j + 2 · · · p+ 2j
, ∅ , ∅ , ∅

)
(

w − 2j + 1 w − 2j + 2 · · · w − j 1 · · · w − 2j w + 1 · · · n

w − j + 1 w − j + 2 · · · w
, ∅ , ∅ , ∅

)
(2.3.5)

and their corresponding highest weight vectors, respectively,

fp = yp1,0 ¯y1,0 · · · ˜y1,0︸ ︷︷ ︸
j

¯y2,0 · · · ˜y2,0︸ ︷︷ ︸
j

yn−2j−p
1,0 and gp = yn−2j−p

1,0 ¯y1,0 · · · ˜y1,0︸ ︷︷ ︸
j

¯y2,0 · · · ˜y2,0︸ ︷︷ ︸
j

yp1,0.

By making the evaluation y1,0 = e11 + e2k,2k + E and y2,0 = e11 + e2k,2k + e12 +
e2k−1,2k, we have fp(y1,0, y2,0) = αe2k−p−j,2k and gp(y1,0, y2,0) = βe1,j+p+1, with α 6= 0
and β 6= 0. Then , for any 0 ≤ p ≤ k − j − 1, fp and gp are not (Z2, ∗)-identities
of Ak,∗. Moreover, the same evaluation shows that these 2(k − j) polynomials are
linearly independent modulo Idgri(Ak,∗). Thus m(n−j,j),∅,∅,∅ ≥ 2(k − j), for any
2 ≤ j ≤ k − 1.

(iii) Now, fixed 1 ≤ l ≤ k−2, for the multipartition ((n− l−1, l, 1),∅,∅,∅) and
for 0 ≤ p ≤ k−j−2 and w = n−p, we consider the following pairs of multitableaux:(

p+ l p+ 1 · · · p+ l − 1 1 · · · p p+ 2l + 2 · · · n

p+ l + 1 p+ l + 3 · · · p+ 2l + 1

p+ l + 2
, ∅ , ∅ , ∅

)
(

w − l − 1 w − 2l · · · w − l − 2 1 · · · w − 2l− 1 w + 1 · · · n

w − l w − l + 2 · · · w

w − l + 1
, ∅ , ∅ , ∅

)
(2.3.6)

and their corresponding highest weight vectors, respectively,

fp = yp1,0 ¯y1,0 · · · ¯̄y1,0︸ ︷︷ ︸
l−1

˜y1,0 ˜y2,0 ˜y3,0 ¯y2,0 · · · ¯̄y2,0︸ ︷︷ ︸
l−1

yn−p−2l−1
1,0 and

gp = yn−p−2l−1
1,0 ¯y1,0 · · · ¯̄y1,0︸ ︷︷ ︸

l−1

˜y1,0 ˜y2,0 ˜y3,0 ¯y2,0 · · · ¯̄y2,0︸ ︷︷ ︸
l−1

yp1,0.

Evaluating y1,0 = e11 + e2k,2k + E, y2,0 = E and y3,0 = e12 + e2k−1,2k, we get
fp(y1,0, y2,0, y3,0) = αe2k−l−p−1,2k and gp(y1,0, y2,0, y3,0) = βe1,l+p+2, with α 6= 0 and
β 6= 0. Thus fp and gp, for any 0 ≤ p ≤ k − j − 2, are not (Z2, ∗)-identities of
Ak,∗ and these 2(k− l−1) polynomials are linearly independent modulo Idgri(Ak,∗).
Hence we have m(n−l−1,l,1),∅,∅,∅ ≥ 2(k − l − 1), for any 1 ≤ l ≤ k − 2.

(iv) Finally, fixed 0 ≤ t ≤ k − 2, for the multipartition ((n− t− 1, t),∅, (1),∅)
and for 0 ≤ p ≤ k − j − 2 and w = n − p, we consider the following pairs of
multitableaux:(

p+ 1 · · · p+ t 1 · · · p p+ 2t+ 2 · · · n

p+ t+ 2 · · · p+ 2t+ 1
, ∅ , p+ t+ 1 , ∅

)
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w − 2t · · · w − t− 1 1 · · · w − 2t− 1 w + 1 · · · n

w − t+ 1 · · · w
, ∅ , w − t , ∅

)
(2.3.7)

and their corresponding highest weight vectors, respectively,

fp = yp1,0 ¯y1,0 · · · ¯̄y1,0︸ ︷︷ ︸
t

z1,0 ¯y2,0 · · · ¯̄y2,0︸ ︷︷ ︸
t

yn−p−2t−1
1,0 and

gp = yn−p−2t−1
1,0 ¯y1,0 · · · ¯̄y1,0︸ ︷︷ ︸

t

z1,0 ¯y2,0 · · · ¯̄y2,0︸ ︷︷ ︸
t

yp1,0.

By making the evaluation y1,0 = e11 + e2k,2k +E and z1,0 = e12− e2k−1,2k, in case
t = 0, and y1,0 = e11 + e2k,2k +E, y2,0 = E and z1,0 = e12− e2k−1,2k otherwise, we get
fp(y1,0, y2,0, z1,0) = αe2k−t−p−1,2k and gp(y1,0, y2,0, z1,0) = βe1,t+p+1, with α 6= 0 and
β 6= 0. Thus m(n−t−1,t),∅,(1),∅ ≥ 2(k − t− 1), for any 0 ≤ t ≤ k − 2, since fp and gp
are not (Z2, ∗)-identities of Ak,∗, for all 0 ≤ p ≤ k − t − 2, and these 2(k − t − 1)
polynomials are linearly independent modulo Idgri(Ak,∗).

Hence, χgrin (Ak,∗) has the wished decomposition. It is easy to show that lgrin (Ak,∗) =
3k2 − 5k + 3, ∀k ≥ 2, and the result is proved.

Now, we study the ∗-graded cocharacters and the ∗-graded colengths of the
minimal varieties vargri(Nk,∗) and vargri(Ut,∗), for all k ≥ 2 and t ≥ 3.

Lemma 2.3.4. For the ∗-superalgebra N2,∗, we have

1. χgrin (N2,∗) = χ(n),∅,∅,∅ + χ(n−1),∅,(1),∅

2. lgrin (N2,∗) = 2.

Proof. By Lemma 2.1.2 it is known that cgrin (N2,∗) = 1 + n and notice that we have

d(n),∅,∅,∅ + d(n−1),∅,(1),∅ = 1 + n = cgrin (N2,∗).

Then, since m(n),∅,∅,∅ = 1, if we find a highest weight vector for the multipartition
((n − 1),∅, (1),∅) which is not a (Z2, ∗)-identity of N2,∗, we may conclude that
χgrin (N2,∗) has the wished decomposition.

In fact, let f1 = yn−1
1,0 z1,0 be the highest weight vector associated to the multi-

partition ((n− 1),∅, (1),∅) corresponding to the multitableaux:

( 1 2 · · · n− 2 n− 1 , ∅ , n , ∅ ). (2.3.8)

It is clear that, by making the evaluation y1,0 = I and z1,0 = e12 − e34, we get
f(y1,0, z1,0) = e12 − e34 6= 0. This implies that f is not a (Z2, ∗)-identity of N2,∗.
Hence, we have χgrin (N2,∗) = χ(n),∅,∅,∅ + χ(n−1),∅,(1),∅ and lgrin (N2,∗) = 2.

Lemma 2.3.5. For the ∗-superalgebra U3,∗, we have
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1. χgrin (U3,∗) = χ(n),∅,∅,∅ + χ(n−1,1),∅,∅,∅ + χ(n−2,1,1),∅,∅,∅ + χ(n−1),∅,(1),∅,

2. lgrin (U3,∗) = 4.

Proof. By Lemma 2.1.4 it is known that cgrin (U3,∗) = 1 + n +
n(n− 1)

2
and notice

that we have

cgrin (U3,∗) = 1 + n+ (n− 1) +
(n− 1)(n− 2)

2
= d(n),∅,∅,∅ + d(n−1),∅,(1),∅ + d(n−2,1),∅,∅,∅ + d(n−1,12),∅,∅,∅.

Then, since m(n),∅,∅,∅ = 1, if we find a highest weight vector for each multipartition
((n−1),∅, (1),∅), ((n−1, 1),∅,∅,∅) and ((n−2, 12),∅,∅,∅) which is not (Z2, ∗)-
identity of U3,∗, we may conclude that χgrin (U3,∗) has the wished decomposition.

In fact, let f = yn−1
1,0 z1,0 be the highest weight vector associated to the multipar-

tition ((n− 1),∅, (1),∅) and corresponding to the multitableaux:

( 1 2 · · · n− 1 , ∅ , n , ∅ ). (2.3.9)

It is clear that, by making the evaluation y1,0 = I and z1,0 = e13 − e46, we get
f(y1,0, z1,0) = e13 − e46 6= 0, then f is not a (Z2, ∗)-identity of U3,∗.

Now, we consider g = [y1,0, y2,0]yn−2
1,0 the highest weight vector associated to the

multipartition ((n− 1, 1),∅,∅,∅) and corresponding to the multitableaux:(
1 3 · · · n

2
, ∅ , ∅ , ∅

)
. (2.3.10)

By making the evaluation y1,0 = I+e12+e56 and y2,0 = e23+e45, we get g(y1,0, y2,0) =
e13 − e46 6= 0. Then g is not a (Z2, ∗)-identity of U3,∗.

Finally, we consider h = St3(y1,0, y2,0, y3,0)yn−3
1,0 the highest weight vector asso-

ciated to the multipartition ((n − 2, 12),∅,∅,∅) and corresponding to the multi-
tableaux: (

1 4 · · · n

2

3
, ∅ , ∅ , ∅

)
. (2.3.11)

By making the evaluation, y1,0 = I, y2,0 = e23 + e45 and y3,0 = e12 + e56, we get
h(y1,0, y2,0, y3,0) = −e13 +e46 6= 0 and it shows that h is not a (Z2, ∗)-identity of U3,∗.

Then, we finally have χgrin (U3,∗) = χ(n),∅,∅,∅ + χ(n−1),∅,(1),∅ + χ(n−1,1),∅,∅,∅ +
χ(n−2,12),∅,∅,∅ and lgrin (U3) = 4.

Next we make the following observation:

Remark 2.3.6. Let k ≥ 2. Then

cgrin (Nk,∗) = d(n),∅,∅,∅ +
k−3∑
j=1

(k − j − 2)[d(n−j,j),∅,∅,∅ + d(n−j−1,j,1),∅,∅,∅]

+
k−2∑
j=0

(k − j − 1)d(n−j−1,j),∅,(1),∅.
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Proof. We will use induction on k. By Lemma 2.3.4, we have

χgrin (N2,∗) = χ(n),∅,∅,∅ + χ(n−1),∅,(1),∅,

it implies that the result is true for k = 2.

Now we suppose the result is true for some k ≥ 2. By Lemma 2.1.3, we have

cgrin (Nk+1,∗) = cgrin (Nk,∗) +

(
n

k − 1

)
(k − 2) +

(
n

k

)
(k).

Hence, by using this, for all r ≥ 1,
r∑
j=0

d(n−j−1,j),∅,(1),∅ =
(
n
r

)
(n−r) =

(
n
r+1

)
(r+1)

and
r∑
j=1

[
d(n−j,j),∅,∅,∅ + d(n−j−1,j,1),∅,∅,∅

]
=
(
n
r+1

)
r, we get the following:

cgrin (Nk+1,∗) = cgrin (Nk,∗) +
(
n
k−1

)
(k − 2) +

(
n
k

)
k

= cgrin (Nk,∗) +
k−2∑
j=1

[d(n−j,j),∅,∅,∅ + d(n−j−1,j,1),∅,∅,∅] +
k−1∑
j=0

d(n−j−1,j),∅,(1),∅

= d(n),∅,∅,∅ +
k−2∑
j=1

(k − j − 1)[d(n−j,j),∅,∅,∅ + d(n−j−1,j,1),∅,∅,∅]

+
k−1∑
j=0

(k − j)d(n−j−1,j),∅,(1),∅

.

Thus the result is true for any k ≥ 2.

Theorem 2.3.7. For k ≥ 2, we have

1. χgrin (Nk,∗) = χ(n),∅,∅,∅ +
k−3∑
j=1

(k − j − 2)
[
χ(n−j,j),∅,∅,∅ + χ(n−j−1,j,1),∅,∅,∅

]
+

k−2∑
j=0

(k − j − 1)χ(n−j−1,j),∅,(1),∅,

2. lgrin (Nk,∗) =
3k2 − 11k + 14

2
.

Proof. The proof is similar to the proof of Theorem 2.3.3. By the previous remark,
we have, for any k ≥ 2,

cgrin (Nk,∗) = d(n),∅,∅,∅ +
k−3∑
j=1

(k − j − 2)[d(n−j,j),∅,∅,∅ + d(n−j−1,j,1),∅,∅,∅]

+
k−2∑
j=0

(k − j − 1)d(n−j−1,j),∅,(1),∅.

It is clear that m(n),∅,∅,∅ = 1. In order to prove the wished decomposition for
χgrin (Nk,∗), we shall prove that the irreducible characters χ(n−j,j),∅,∅,∅, χ(n−l−1,l,1),∅,∅,∅
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and χ(n−t−1,t),∅,(1),∅, for 1 ≤ j, l ≤ k−3 and 0 ≤ t ≤ k−2, appear in the decomposi-
tion of the ∗-graded cocharacter χgrin (Nk,∗) with multiplicity m(n−j,j),∅,∅,∅ = k−j−2,
m(n−l−1,l,1),∅,∅,∅ = k − l − 2 and m(n−t−1,1),∅,(1),∅ = k − t− 1, respectively.

(i) Fixed 1 ≤ j ≤ k − 3, for the multipartition ((n − j, j),∅,∅,∅) and for
0 ≤ p ≤ k − j − 3, we consider the multitableaux (2.3.5) given in Lemma 2.3.3
whose corresponding highest weight vector is

fp = yn−2j−p
1,0 ¯y1,0 · · · ˜y1,0︸ ︷︷ ︸

j

¯y2,0 · · · ˜y2,0︸ ︷︷ ︸
j

yp1,0.

By making the evaluation y1,0 = I + E and y2,0 = I + e13 + e2k−2,2k we get

fp(y1,0, y2,0) = α

k−2∑
i=0

(
n− 2j − p

i

)
e2k−j−i−2,2k + β

p∑
i=0

(
p

i

)
e1,3+j+i,

with α and β non-zero values. Then, for any 0 ≤ p ≤ k − j − 3, fp is not a
(Z2, ∗)-identity of Nk,∗. Moreover, the same evaluation shows that these (k− j − 2)
polynomials are linearly independent modulo Idgri(Nk,∗). Thus m(n−j,j),∅,∅,∅ ≥ k −
j − 2, for any 1 ≤ j ≤ k − 3.

(ii) Now, fixed 1 ≤ l ≤ k − 3, for the multipartition ((n − l − 1, l, 1),∅,∅,∅)
and 0 ≤ p ≤ k − j − 3, we consider the multitableaux (2.3.6) with the following
corresponding highest weight vector:

gp = yn−p−2l−1
1,0 ¯y1,0 · · · ¯̄y1,0︸ ︷︷ ︸

l−1

˜y1,0 ˜y2,0 ˜y3,0 ¯y2,0 · · · ¯̄y2,0︸ ︷︷ ︸
l−1

yp1,0.

Evaluating y1,0 = I + E, y2,0 = E and y3,0 = e13 + e2k−2,2k, we also get

gp(y1,0, y2,0, y3,0) = α

k−2∑
i=0

(
n− 2j − p

i

)
e2k−j−i−2,2k + β

p∑
i=0

(
p

i

)
e1,3+j+i,

with α and β non-zero values. Thus gp, for any 0 ≤ p ≤ k − j − 3, is not a (Z2, ∗)-
identity of Nk,∗ and these (k − l − 2) polynomials are linearly independent modulo
Idgri(Nk,∗). Hence, we have m(n−l−1,l,1),∅,∅,∅ ≥ (k − l − 2), for any 1 ≤ l ≤ k − 3.

(iii) Finally, fixed 0 ≤ t ≤ k − 2, for the multipartition ((n− t− 1, t),∅, (1),∅)
and for 0 ≤ p ≤ k−j−2, we consider the multitableaux (2.3.7) and its corresponding
highest weight vector

hp = yn−p−2t−1
1,0 ¯y1,0 · · · ¯̄y1,0︸ ︷︷ ︸

t

z1,0 ¯y2,0 · · · ¯̄y2,0︸ ︷︷ ︸
t

yp1,0.

By making the evaluation y1,0 = I + E and z1,0 = e12 − e2k−1,2k, in case t = 0,
and y1,0 = I + E, y2,0 = E and z1,0 = e12 − e2k−1,2k otherwise, we get

hp(y1,0, y2,0, z1,0) = α
k−2∑
i=0

(
n− 2j − p

i

)
e2k−j−i−1,2k + β

p∑
i=0

(
p

i

)
e1,2+j+i,
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with α and β non-zero values. Thus m(n−t−1,t),∅,(1),∅ ≥ (k − t− 1), for any 0 ≤ t ≤
k − 2, since hp is not a (Z2, ∗)-identity of Nk,∗, for all 0 ≤ p ≤ k − t− 2, and these
(k − t− 1) polynomials are linearly independent modulo Idgri(Nk,∗).

Hence, by the previous remark, χgrin (Nk,∗) has the wished decomposition. It is

easy to show that lgrin (Nk,∗) =
3k2 − 11k + 14

2
.

We will omit the proof of the following theorem, since we can prove it similarly
to the proof of Theorem 2.3.7.

Theorem 2.3.8. For k ≥ 3, we have

1. χgrin (Uk,∗) = χ(n),∅,∅,∅ +
k−2∑
j=1

(k − j − 1)
[
χ(n−j,j),∅,∅,∅ + χ(n−j−1,j,1),∅,∅,∅

]
+

k−3∑
j=0

(k − j − 2)χ(n−j−1,j),∅,(1),∅,

2. lgrin (Uk,∗) =
3k2 − 9k + 8

2
.

Now, we explicit the sequences of ∗-graded cocharacters and of ∗-graded colengths
of the minimal varieties vargri(A) ⊆ vargri(M gri).

We start by computing the ∗-cocharacters and the ∗-colengths of the minimal
varieties vargri(Agrik ), for k ≥ 2. In order to demonstrate the decomposition of the
χgrin (Agrik ), for any k ≥ 2, we need to prove the following results.

Lemma 2.3.9. For the ∗-superalgebra Agri2 , we have

1. χgrin (Agri2 ) = χ(n),∅,∅,∅ + 2χ(n−1),(1),∅,∅ + 2χ(n−1),∅,∅,(1),

2. lgrin (Agri2 ) = 5.

Proof. By Lemma 2.2.5 we have cgrin (Agri2 ) = 1 + 4n. We notice that

d(n),∅,∅,∅ + 2d(n−1),(1),∅,∅ + 2d(n−1),∅,∅,(1) = 1 + 4n = cgrin (Agri2 ).

Let us consider the following highest weight vectors associated to the multipar-
tition ((n− 1), (1),∅,∅) and their corresponding multitableaux:

( 1 2 · · · n− 2 n− 1 , n , ∅ , ∅ ) and f1 = yn−1
1,0 y1,1 (2.3.12)

( 2 3 · · · n− 1 n , 1 , ∅ , ∅ ) and f2 = y1,1y
n−1
1,0 . (2.3.13)

It is clear that, by making the evaluation y1,0 = e11 +e44 and y1,1 = e12 +e34, we get
f1(y1,0, y1,1) = e12 6= 0 and f2(y1,0, y1,1) = e34 6= 0. This implies that f1 and f2 are
not (Z2, ∗)-identities of Agri2 and these polynomials are linearly independent modulo
Idgri(Agri2 ). So m(n−1),(1),∅,∅ ≥ 2.
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On the other hand, consider the following highest weight vectors associated to
the multipartition ((n− 1),∅,∅, (1)) and their corresponding multitableaux:

( 1 2 · · · n− 2 n− 1 , ∅ , ∅ , n ) and g1 = yn−1
1,0 z1,1 (2.3.14)

( 2 3 · · · n− 1 n , ∅ , ∅ , 1 ) and g2 = z1,1y
n−1
1,0 . (2.3.15)

By making the evaluation y1,0 = e11 + e44 and z1,1 = e12− e34, we get g1(y1,0, z1,1) =
e12 6= 0 and g2(y1,0, z1,1) = −e34 6= 0. Then it implies that g1 and g2 are not (Z2, ∗)-
identities of Agri2 and these polynomials are linearly independent modulo Idgri(Agri2 ).
So m(n−1),∅,∅,(1) ≥ 2.

Thus, we finally have χgrin (Agri2 ) = χ(n),∅,∅,∅ +2χ(n−1),(1),∅,∅ +2χ(n−1),∅,∅,∅,(1) and

lgrin (Agri2 ) = 5.

Remark 2.3.10. Let k ≥ 2. Then

cgrin (Agrik ) = d(n),∅,∅,∅ +
k−2∑
j=0

2(k − j − 1)[d(n−j−1,j),(1),∅,∅ + d(n−j−1,j),∅,∅,(1)]

Proof. We will use induction on k. By Lemma 2.3.9, we have

χgrin (Agri2 ) = χ(n),∅,∅,∅ + 2χ(n−1),(1),∅,∅ + 2χ(n−1),∅,∅,(1)

it implies that cgrin (Agri2 ) = d(n),∅,∅,∅ + 2d(n−1),(1),∅,∅ + 2d(n−1),∅,∅,(1) so the result is
true for k = 2.

Now, we suppose the result is true for some k ≥ 2. By Lemma 2.2.5, we have

cgrin (Agrik+1) = cgrin (Agrik ) + 4
(
n
k−1

)
(n− k + 1)

= cgrin (Agrik ) + 2
k−1∑
j=0

d(n−j,j−1),∅,∅,(1) + 2
k−1∑
j=0

d(n−j,j−1),(1),∅,∅

= d(n),∅,∅,∅ +
k−1∑
j=0

2(k − j)[d(n−j−1,j),(1),∅,∅ + d(n−j−1,j),∅,∅,(1)]

by using
k−1∑
j=0

d(n−j−1,j),∅,∅,(1) =
k−1∑
j=0

d(n−j−1,j),(1),∅,∅ =
(
n
k−1

)
(n − k + 1). Thus, the

result is true for any k ≥ 2.

Now we are in position to compute the ∗-graded cocharacter and the ∗-graded
colength of Agrik , for any k ≥ 2.

Theorem 2.3.11. For k ≥ 2, we have

1. χgrin (Agrik ) = χ(n),∅,∅,∅ +
k−2∑
j=0

2(k − j − 1)[χ(n−j−1,j),(1),∅,∅ + χ(n−j−1,j),∅,∅,(1)],
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2. lgrin (Agrik ) = 2k2 − 2k + 1.

Proof. By the previous remark, we have, for any k ≥ 2,

cgrin (Agrik ) = d(n),∅,∅,∅ +
k−2∑
j=0

2(k − j − 1)[d(n−j−1,j),(1),∅,∅ + d(n−j−1,j),∅,∅,(1)]

It is clear that m(n),∅,∅,∅ = 1. In order to prove the wished decomposition

for χgrin (Agrik ), we shall prove that the irreducible characters χ(n−t−1,t),(1),∅,∅ and
χ(n−t−1,t),∅,∅,(1), for 0 ≤ t ≤ k − 2, both appear in the decomposition of the cochar-

acter χgrin (Agrik ) with multiplicity m(n−t−1,t),(1),∅,∅,∅ = m(n−t−1,t),∅,∅,(1) = 2(k− t−1).

Fixed 0 ≤ t ≤ k − 2 and for 0 ≤ p ≤ k − j − 2 and w = n− p, we consider the
following pairs of multitableaux:(

Tλ1 , Tµ1
)

=
(

p+ 1 · · · p+ t 1 · · · p p+ 2t+ 2 · · · n

p+ t+ 2 · · · p+ 2t+ 1
, p+ t+ 1

)
(
Tλ2 , Tµ2

)
=
(

w − 2t · · · w − t− 1 1 · · · w − 2t− 1 w + 1 · · · n

w − t+ 1 · · · w
, w − t

)
(2.3.16)

Now, for the multipartitions ((n− t−1, t), (1),∅,∅) and ((n− t−1, t),∅,∅, (1))
consider the highest weight vectors

fp = yp1,0 ¯y1,0 · · · ¯̄y1,0︸ ︷︷ ︸
t

x1,1 ¯y2,0 · · · ¯̄y2,0︸ ︷︷ ︸
t

yn−p−2t−1
1,0

corresponding to the multitableaux (Tλ1 , Tµ1 ,∅,∅) and (Tλ1 ,∅,∅, Tµ1) according to
x1,1 = y1,1 or x1,1 = z1,1, respectively. And consider the highest weight vector

gp = yn−p−2t−1
1,0 ¯y1,0 · · · ¯̄y1,0︸ ︷︷ ︸

t

x1,1 ¯y2,0 · · · ¯̄y2,0︸ ︷︷ ︸
t

yp1,0

corresponding to the multitableaux (Tλ2 , Tµ2 ,∅,∅) and (Tλ2 ,∅,∅, Tµ2) according to
x1,1 = y1,1 or x1,1 = z1,1, respectively.

By making the evaluation y1,0 = e11 + e2k,2k + E, y2,0 = E (when t > 0),
y1,1 = e12 + e2k−1,2k and z1,0 = e12 − e2k−1,2k we get fp(y1,0, y2,0, x1,1) = αe2k−t−p−1,2k

and gp(y1,0, y2,0, x1,1) = βe1,t+p+1, with α 6= 0 and β 6= 0, for x1,1 = y1,1 or x1,1 = z1,1.
Thus, m(n−t−1,t),(1),∅,∅ ≥ 2(k − t − 1) and m(n−t−1,t),∅,∅,(1) ≥ 2(k − t − 1), for any

0 ≤ t ≤ k−2, since fp and gp are not (Z2, ∗)-identities of Agrik , for all 0 ≤ p ≤ k−t−2,
and these 2(k − t− 1) polynomials are linearly independent modulo Idgri(Agrik ).

Since cgrin (Agrik ) = d(n),∅,∅,∅ +
k−2∑
j=0

2(k − j − 1)[d(n−j−1,j),(1),∅,∅ + d(n−j−1,j),∅,∅,(1)],

we conclude that χgrin (Agrik ) has the wished decomposition. It is easy to show that
lgrin (Agrik ) = 2k2 − 2k + 1,∀k ≥ 2, and the result is proved.

Finally, we study the ∗-graded cocharacter of the minimal ∗-superalgebras N gri
k

and U gri
k for any k ≥ 2.
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Lemma 2.3.12. For the ∗-superalgebras N gri
2 and U gri

2 , we have

1. χgrin (N gri
2 ) = χ(n),∅,∅,∅ + χ(n−1),∅,∅,(1),

2. χgrin (U gri
2 ) = χ(n),∅,∅,∅ + χ(n−1),(1),∅,∅,

3. lgrin (N gri
2 ) = lgrin (U gri

2 ) = 2.

Proof. Let us consider the algebra N gri
2 . The arguments are similar for U gri

2 . By
Lemma 2.2.1 it is known that cgrin (N gri

2 ) = n+ 1 and notice that we have

d(n),∅,∅,∅ + d(n−1),∅,∅,(1) = 1 + n = cgrin (N gri
2 ).

We also have m(n),∅,∅,∅ = 1. Consider f = yn−1
1,0 z1,1 the standard highest weight vec-

tor corresponding to the multipartition ((n−1),∅,∅, (1)). By making the evaluation
y1,0 = I and z1,1 = e12 − e34, we get f(y1,0, z1,1) = e12 − e34 and so f 6∈ Idgri(N gri

2 )
and this implies that m(n−1),∅,∅,(1) ≥ 1. Hence, by comparing the codimension, we

must have χgrin (N gri
2 ) = χ(n),∅,∅,∅ + χ(n−1),∅,∅,(1) and lgrin (N gri

2 ) = 2.

Now we may explicit the decomposition of the ∗-graded cocharacter of N gri
k and

U gri
k for any k ≥ 2. The computations are similar to the ones in Theorem 2.3.7.

Theorem 2.3.13. For k ≥ 2, we have

1. χgrin (N gri
k ) = χ(n),∅,∅,∅+

k−3∑
j=0

(k−j−2)χ(n−j−1,j),(1),∅,∅+
k−2∑
j=0

(k−j−1)χ(n−j−1,j),∅,∅,(1),

2. χgrin (U gri
k ) = χ(n),∅,∅,∅+

k−2∑
j=0

(k−j−1)χ(n−j−1,j),(1),∅,∅+
k−3∑
j=0

(k−j−2)χ(n−j−1,j),∅,∅,(1),

3. lgrin (N gri
k ) = lgrin (U gri

k ) = k2 − 2k + 2.

We end this section by collecting the ∗-superalgebras with small ∗-graded
colength that appear in this chapter. We observe that lgrin (N2,∗) = lgrin (U gri

2 ) =
lgrin (N gri

2 ) = 2 and lgrin (A2,∗) = lgrin (Agri2 ) = 5. Also, for all k > 2, the ∗-superalgebras
Nk,∗, Uk,∗, Ak,∗, N

gri
k , U gri

k , Agrik and any direct sum of two distinct ∗-superalgebras
among them have ∗-graded colength greater than 3.



58

Chapter 3

∗-Superalgebras with small
colength

The study of the subvarieties of the commutative APG ∗-superalgebras vargri(D∗)
and vargri(Dgr) has already been done in previous situations and in different con-
texts.

In this chapter, we recall the classification of the subvarieties of vargri(D∗) and
vargri(Dgr) given in [21, Theorem 7] and [20, Theorem 8.3] in the specific cases of
varieties of algebras with involution and varieties of superalgebras, respectively.

Here we establish the results about those subvarieties in the ∗-superalgebra lan-
guage and, as a new contribution, we classify all subvarieties of vargri(Dgri). We
also compute the ∗-graded colengths of all minimal subvarieties of the commutative
APG ∗-supervarieties considered above, based on the decomposition of the ∗-graded
cocharacter of each one of them.

We will use the results proved here and the results contained in Chapter 2 to
demonstrate the main result of our thesis, that is to classify the ∗-superalgebras
with ∗-graded colength bounded by three in the last section of this chapter.

3.1 Subvarieties of the APG commutative ∗-super-
varities

The ∗-superalgebraD∗ is the algebraD = F⊕F with trivial grading and endowed
with the exchange involution (a, b)∗ = (b, a). So it is not difficult to see that the
classification of ∗-superalgebras, up to T ∗2 -equivalence, inside vargri(D∗) and the
classification of the ∗-algebras inside var∗(D) are equivalent. This last classification
was done by La Mattina and Martino in [21, Theorem 7].

Next, we present the ∗-superalgebra Ck,∗, which generates the only minimal sub-
variety of vargri(D∗) and restate the results in [21] in the language of ∗-superalgebras.
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In the end of this section, we exhibit the decomposition of χn(Ck,∗) and compute its
∗-graded codimension.

For k ≥ 2, we denote by Ik the k × k identity matrix and consider the matrix

E1 =
k−1∑
i=1

ei,i+1 ∈ UTk, where e′ijs are the usual matrix units.

We denote by Ck,∗ the commutative subalgebra of UTk

Ck = {αIk +
∑

1≤i<k

αiE
i
1 | α, αi ∈ F}

with trivial grading and endowed with the involution given by

(αIk +
∑

1≤i<k

αiE
i
1)∗ = αIk +

∑
1≤i<k

(−1)iαiE
i
1.

For instance

((C4,∗)
(0))+ =


a 0 c 0
0 a 0 c
0 0 a 0
0 0 0 a

 and ((C4,∗)
(0))− =


0 b 0 d
0 0 b 0
0 0 0 b
0 0 0 0

.

Recall that Idgri(D∗) = 〈y1,1, z1,1, [y1,0, y2,0], [y1,0, z1,0], [z1,0, z2,0]〉T ∗2 and notice
that Ck,∗ satisfies all (Z2, ∗)-identities of D∗. Hence Ck,∗ ∈ vargri(D∗). Below
we present the (Z2, ∗)-identities and the ∗-graded codimension sequence of the ∗-
superalgebra Ck,∗, for all k ≥ 2.

Theorem 3.1.1. [21, Lemma 9] Let k ≥ 2. Then

1. Idgri(Ck,∗) = 〈y1,1, z1,1, [y1,0, y2,0], [y1,0, z1,0], [z1,0, z2,0], z1,0 · · · zk,0〉T ∗2 .

2. cgrin (Ck,∗) =
k−1∑
j=0

(
n
j

)
≈ 1

(k−1)!
nk−1.

Proof. Let Q = 〈y1,1, z1,1, [y1,0, y2,0], [y1,0, z1,0], [z1,0, z2,0], z1,0 · · · zk,0〉T ∗2 . It is easily

checked that Q ⊆ Idgri(Ck,∗), since Ck,∗ is commutative with trivial grading and

((C
(1)
k,∗)
−)k = 0.

Let f be a (Z2, ∗)-identity of Ck,∗ of degree t. Since the (Z2, ∗)-identities of
a unitary ∗-superalgebra follow from the proper ones, we may assume f is proper.
Now, if we reduce the polynomial f modulo Q, we obtain f is the zero polynomial
if t ≥ k and f = αz1,0 · · · zt,0 if t ≤ k − 1. In the second case, if α = 0, by
evaluating zi,0 = E1, for all 1 ≤ i ≤ t, we get f = αEt

1 6= 0, a contradiction, because
f ∈ Idgri(Ck,∗). Hence, we must have α = 0, and so, Idgri(Ck,∗) = Q



CHAPTER 3. ∗-SUPERALGEBRAS WITH SMALL COLENGTH 60

This also proves that in case t ≤ k − 1, the polynomial z1,0 · · · zt,0 forms a
basis of the multilinear proper polynomials of degree t modulo Idgri(Ck,∗). Hence
γgrit (Ck,∗) = 1 for 0 ≤ t ≤ k − 1 and γgrit (Ck,∗) = 0 for t ≥ k. Then we get

cgrin (Ck,∗) =
k−1∑
j=0

(
n

j

)
.

Notice that, by Lemma 2.1.2, we have C2,∗ ∼T ∗2 N2,∗.

Remark 3.1.2. Since D∗ is commutative with trivial grading, we may see the algebra
D∗ only with the involution algebra structure. Then if A ∈ vargri(D∗) we use the
[21, Theorem 3] to show that if cgrin (A) is polynomially bounded then

A ∼T ∗2 (B1 ⊕ . . .⊕Bm),

for some finite dimensional ∗-superalgebras Bi, 1 ≤ i ≤ m such that dim Bi
J(Bi)

≤ 1,

for all 1 ≤ i ≤ m. It means that either Bi
∼= J(Bi) is nilpotent or Bi

∼= F + J(Bi).

So, in order to classify all subvarieties in vargri(D∗), we just need to know what
happens with ∗-superalgebras of type F +J that satisfy the (Z2, ∗)-identities of D∗.

Before proving that Ck,∗ generates a minimal ∗-supervariety of polynomial
growth we need some results about ∗-superalgebras of the type A = F + J.

Lemma 3.1.3. Let A = F +J be a ∗-superalgebra with J = J11 +J10 +J01 +J00. If
A satisfies the (Z2, ∗)-identities [y1,0, y2,0] ≡ [z1,0, y1,0] ≡ [y1,1, y1,0] ≡ [z1,1, y1,0] ≡ 0,
then J10 = J01 = 0.

Proof. In fact, suppose that there exists a ∈ J (0)
10 . Then we have a+a∗ is a symmetric

element and a∗ − a is a skew element, both with degree 0. Since [y1,0, y2,0] ≡
[z1,0, y1,0] ≡ 0 in A, we have [a+ a∗, 1F ] = a∗ − a = 0 and [a∗ − a, 1F ] = a∗ + a = 0,

thus a = 0. Hence J
(0)
10 = 0 and J

(0)
01 = (J

(0)
10 )∗ = 0.

Similarly, we have J
(1)
10 = J

(1)
01 = 0. Hence A = (F + J11)⊕ J00.

Corollary 3.1.4. Let A = F +J be a ∗-superalgebra with J = J11 +J10 +J01 +J00.
If A ∈ vargri(D∗) then J10 = J01 = 0.

Lemma 3.1.5. For any k ≥ 2, Ck,∗ generates a minimal ∗-supervariety of polyno-
mial growth.

Proof. Suppose that the algebraA ∈ vargri(Ck,∗) generates a subvariety of vargri(Ck,∗)
and cgri(A) ≈ qnk−1, for some q > 0. We shall prove that in this case A ∼T ∗2 Ck,∗
and this will complete the proof.

By Remark 3.1.2 we may assume that

A = (B1 ⊕ . . .⊕Bm),
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where B1, . . . , Bm are finite dimensional ∗-superalgebras such that dim Bi
J(Bi)

≤ 1, for
all 1 ≤ i ≤ m.

Since cgrin (A) ≤ cgrin (B1 ⊕ . . . ⊕ Bm), then there exists Bi such that cgrin (Bi) ≈
bnk−1, for some b > 0. Hence

vargri(Ck,∗) ⊇ vargri(A) ⊇ vargri(F + J(Bi)) ⊇ vargri(F + J11(Bi))

and cgrin (Bi) = cgrin (F + J(Bi)) ≈ bnk−1. By Corollary 3.1.4, since F + J(Bi) ∈
vargri(D∗), we get F + J(Bi) = F + J11(Bi) ⊕ J00(Bi) and cgrin (F + J(Bi)) =
cgrin (F + J11(Bi)), for n large enough. Then, we may assume that A is a unitary
algebra.

Now, since cgrin (A) ≈ qnk−1 then cgrin (A) =
k−1∑
j=0

(
n
j

)
γgrij (A), and, by Proposition

1.3.7, we must have γgrij (A) 6= 0 for all 1 ≤ j ≤ k−1. Since A ∈ vargri(Ck,∗), we have

γgrij (A) ≤ γgrij (Ck,∗) = 1. Then cgrin (A) = cgrin (Ck,∗) for all n and so, A ∼T ∗2 Ck,∗.

At this point, we are in a position to classify the subvarieties of vargri(D∗).

Theorem 3.1.6. [21, Theorem 7] Let A be a ∗-superalgebra such that vargri(A) (
vargri(D∗). Then either A ∼T ∗2 N or A ∼T ∗2 C ⊕N or A ∼T ∗2 Ck,∗ ⊕N , for some
k ≥ 2, where N is a nilpotent ∗-superalgebra and C is a commutative ∗-superalgebra
with trivial grading and trivial involution.

Proof. If vargri(A) ( vargri(D∗), then cgrin (A) ≈ qnk−1 for some k ≥ 0, since
vargri(D∗) has almost polynomial growth, by Theorem 1.4.5.

By Remark 3.1.2 we may assume that

A = B1 ⊕ . . .⊕Bm,

where B1, . . . , Bm are finite dimensional ∗-superalgebras such that dim Bi
J(Bi)

≤ 1,
for all 1 ≤ i ≤ m. If Bi is nilpotent for all 1 ≤ i ≤ m, then we have A ∼T ∗2 N .
Otherwise, by Corollary 3.1.4 we may assume Bi

∼= (F+J11)⊕J00 or Bi is a nilpotent
∗-superalgebra. Hence A = B1 ⊕ . . .⊕Bm = B ⊕N and

cgrin (A) = cgrin (B) =
k−1∑
j=0

(
n

j

)
γgrij (B),

for n large enough, where B is a unitary ∗-superalgebra.

If k = 1, then Γgri1 ⊆ Idgri(B), hence B is commutative with trivial grading
and trivial involution, and so A ∼T ∗2 C ⊕ N . If k ≥ 2, we have Γgrik ⊆ Idgri(B)
then B ∈ vargri(Ck,∗). By Lemma 3.1.5, Ck,∗ generates a minimal ∗-supervariety
of polynomial growth. Since cgrin (B) ≈ qnk−1 and cgrin (Ck,∗) ≈ q′nk−1 we obtain
B ∼T ∗2 Ck,∗, so A ∼T ∗2 Ck,∗ ⊕N.
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A consequence of the previous theorem is the classification of all the ∗-superalgebras
generating minimal varieties lying in the variety generated by D∗.

Corollary 3.1.7. [21, Corollary 3] A ∗-superalgebra A ∈ vargri(D∗) generates a
minimal ∗-supervariety of polynomial growth if and only if A ∼T ∗2 Ck,∗, for some
k ≥ 2.

Next we describe the sequences of the ∗-graded cocharacter and of the ∗-graded
colength of the only minimal variety lying in vargri(D∗).

Since D is commutative, any antiautomorphism of D is an automorphism, so D∗
can be viewed as a superalgebra with grading (D(0), D(1)) whereD(0) = D+

∗ = F (1, 1)
and D(1) = D−∗ = F (1,−1). Thus the descriptions of the sequence of the ∗-graded
cocharacter and the ∗-graded colength of the minimal variety generated by Ck,∗
correspond to the descriptions given for the minimal variety generated by Ck of
vargr(F ⊕ cF ), with c2 = 1, proved by Nascimento, dos Santos and Vieira in [26,
Theorem 8.3]. Here we restate such results in ∗-superalgebra language.

Theorem 3.1.8. [26, Theorem 8.3] For k ≥ 2, χgrin (Ck,∗) =
k−1∑
j=0

χ(n−j),∅,(j),∅ and

lgrin (Ck,∗) = k.

Proof. For any 0 ≤ j ≤ k − 1 we consider the highest weight vector f〈λ〉 = yn−j1,0 z
j
1,0

corresponding to the multipartition 〈λ〉 = ((n − j),∅, (j),∅). Since j ≤ k − 1,
evaluating y1,0 = Ik and z1,0 = E1, we get f〈λ〉 = Ej

1 6= 0 and so m((n−j),∅,(j),∅) 6= 0,
for all j = 0, . . . , k − 1.

Thus, by using Theorem 3.1.1 we have

cgrin (Ck,∗) ≥
k−1∑
j=0

d((n−j),∅,(j),∅) =
k−1∑
j=0

(
n

j

)
= cgrin (Ck,∗).

We conclude that we must have m((n−j),∅,(j),∅) = 1, for all j = 1, . . . , k and zero
in other cases. Hence

χgrin (Ck,∗) =
k−1∑
j=0

χ((n−j),∅,(j),∅)).

As a consequence lgrin (Ck,∗) = k and we finish the proof.

Now we study the subvarieties of the ∗-supervariety generated by Dgr, the
algebra D with the grading Dgr = F (1, 1)⊕ F (1,−1) and trivial involution.

Since Dgr is commutative with trivial involution, we can see Dgr only as a
superalgebra and we have vargr(Dgr) = vargr(F ⊕ cF ), with c2 = 1. Hence, the
classification of the ∗-superalgebras, up to T 2

∗ -equivalence, inside vargri(Dgr) and
the classification of the superalgebras inside the vargr(F ⊕ cF ), with c2 = 1, are
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equivalent. This last classification was given by La Mattina in [20, Theorem 8.2].
Next we present such results in the language of ∗-superalgebras.

For k ≥ 2, we have already considered the k × k identity matrix Ik and the

matrix E1 =
k−1∑
i=1

ei,i+1 ∈ UTk, where e′ijs are the usual matrix units.

We denote by Cgr
k the commutative subalgebra of UTk

Ck = {αIk +
∑

1≤i<k

αiE
i
1 | α, αi ∈ F},

with elementary Z2-grading induced by g = (0, 1, 0, 1 . . .) ∈ Zk2 and trivial involution.

For example

((Cgr
4 )(0))+ =


a 0 c 0
0 a 0 c
0 0 a 0
0 0 0 a

 and ((Cgr
4 )(1))+ =


0 b 0 d
0 0 b 0
0 0 0 b
0 0 0 0

.
Remind that Idgri(Dgr) = 〈z1,0, z1,1〉T ∗2 and notice that Cgr

k ∈ vargri(Dgr). The
following result shows the (Z2, ∗)-identities and the ∗-graded codimension sequence
of the ∗-superalgebra Cgr

k , for all k ≥ 2.

Theorem 3.1.9. [20, Theorem 8.1] Let k ≥ 2. Then

1. Idgri(Cgr
k ) = 〈z1,0, z1,1, y1,1 . . . yk,1〉T ∗2 .

2. cgrin (Cgr
k ) =

k−1∑
j=0

(
n
j

)
≈ 1

(k−1)!
nk−1, n→∞.

Proof. First of all notice that since z1,0, z1,1 ∈ Idgri(Cgr
k ), then we have

[y1,0, y2,0], [y1,0, y1,1], [y1,1, y2,1] ∈ Idgri(Cgr
k ). Now let Q = 〈z1,0, z1,1, y1,1 . . . yk,1〉T ∗2 .

It is easily checked that Q ⊆ Idgri(Cgr
k ), since Cgr

k is commutative with trivial invo-
lution and (((Cgr

k )(1))+)k = 0.

Let f be a (Z2, ∗)-identity of Cgr
k of degree t. Since the (Z2, ∗)-identities of

a unitary ∗-superalgebra follow from the proper ones, we may assume f is proper.
Now, after reducing the polynomial f modulo Q, we obtain: f is the zero polynomial
if t ≥ k; and f = αy1,1 · · · yt,1 if t ≤ k − 1. In the second case, if α = 0, by
evaluating yi,1 = E1, for all 1 ≤ i ≤ t, we get f = αEt

1 6= 0, a contradiction, because
f ∈ Idgri(Cgr

k ). Hence, we must have α = 0, and so, Idgri(Cgr
k ) = Q.

This also proves that in case t ≤ k − 1, the polynomial y1,1 · · · yt,1 forms a
basis of the multilinear proper polynomials of degree t modulo Idgri(Cgr

k ). Hence
γgrit (Cgr

k ) = 1 for 0 ≤ t ≤ k − 1, and γgrit (Cgr
k ) = 0 for t ≥ k. Then we get

cgrin (Cgr
k ) =

k−1∑
j=0

(
n

j

)
.
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Notice that, by Lemma 2.2.1, we have Cgr
2 ∼T ∗2 U

gri
2 .

In the next two results, we state that vargri(Cgr
k ) is a minimal ∗-supervariety

of polynomial growth in vargri(Dgr) and give the classification of the subvarieties of
vargri(Dgr). The proofs are very similar to the proofs of Lemma 3.1.5 and Theorem
3.1.6 and they will be omitted.

Lemma 3.1.10. For any k ≥ 2, Cgr
k generates a minimal ∗-supervariety of polyno-

mial growth.

Theorem 3.1.11. [20, Theorem 8.2] Let A be a ∗-superalgebra such that vargri(A) (
vargri(Dgr). Then either A ∼T ∗2 N or A ∼T ∗2 C ⊕N or A ∼T ∗2 C

gr
k ⊕N , for some

k ≥ 2, where N is a nilpotent ∗-superalgebra and C is a commutative ∗-superalgebra
with trivial grading and trivial involution.

A consequence of the previous theorem is the classification of the ∗-superalgebras
generating minimal varieties lying in the variety generated by Dgr.

Corollary 3.1.12. [20, Corollary 8.2] A ∗-superalgebra A ∈ vargri(Dgr) generates
a minimal ∗-supervariety of polynomial growth if and only if A ∼T ∗2 C

gr
k , for some

k ≥ 2.

We give below the descriptions of the sequences of ∗-graded cocharacters and of
∗-graded colengths of the only minimal variety lying in vargri(Dgr). We have noticed
previously that these descriptions correspond to the ones for the superalgebra Ck
given by Nascimento, dos Santos and Vieira in [26, Theorem 8.3].

Theorem 3.1.13. [26, Theorem 8.3] For k ≥ 2, χgrin (Cgr
k ) =

k−1∑
j=0

χ(n−j),(j),∅,∅ and

lgrin (Cgr
k ) = k.

Proof. For any 1 ≤ j ≤ k − 1 we consider the highest weight vector f〈λ〉 = yn−j1,0 y
j
1,1

corresponding to the multipartition 〈λ〉 = ((n− j), (j),∅,∅). Evaluating y1,0 = Ik
and y1,1 = E1, we get f〈λ〉 = Ej

1 6= 0, since j ≤ k − 1 and so m((n−j),(j),∅,∅) 6= 0, for
all j = 0, . . . , k − 1.

Thus by using Theorem 3.1.9 we have

cgrin (Cgr
k ) ≥

k−1∑
j=0

d((n−j),(j),∅,∅) =
k−1∑
j=0

(
n

j

)
= cgrin (Cgr

k ).

We conclude m((n−j),(j),∅,∅) = 1, for all j = 1, . . . , k and zero in other cases.
Hence

χgrin (Cgr
k ) =

k−1∑
j=0

χ((n−j),(j),∅,∅) and so lgrin (Cgr
k ) = k.
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Finally we study the subvarieties of the ∗-supervariety generated by Dgri, the
algebra D with the grading F (1, 1) ⊕ F (1,−1) and endowed with the exchange
involution.

For k ≥ 2, we have already considered the k × k identity matrix Ik and the

matrix E1 =
k−1∑
i=1

ei,i+1 ∈ UTk, where e′ijs are the usual matrix units.

We denote by Cgri
k the commutative subalgebra of UTk

Ck = {αIk +
∑

1≤i<k

αiE
i
1 | α, αi ∈ F}

with elementary Z2-grading induced by g = (0, 1, 0, 1 . . .) ∈ Zk2 and endowed with
the involution given by

(αIk +
∑

1≤i<k

αiE
i
1)∗ = αIk +

∑
1≤i<k

(−1)iαiE
i
1.

For instance

((Cgri
4 )(0))+ =


a 0 c 0
0 a 0 c
0 0 a 0
0 0 0 a

 and ((Cgri
4 )(1))− =


0 b 0 d
0 0 b 0
0 0 0 b
0 0 0 0

.

We know that Idgri(Dgri) = 〈z1,0, y1,1〉T ∗2 . Notice that Cgri
k ∈ vargri(Dgri).

Next we calculate the T ∗2 -ideal and the ∗-graded codimension of Cgri
k .

Theorem 3.1.14. Let k ≥ 2. Then

1. Idgri(Cgri
k ) = 〈z1,0, y1,1, z1,1 . . . zk,1〉T ∗2 .

2. cgrin (Cgri
k ) =

k−1∑
j=0

(
n
j

)
≈ 1

(k−1)!
nk−1, n→∞.

Proof. First of all, notice that z1,0, y1,1 ∈ Idgri(Cgr
k ), then we have [y1,0, y2,0],

[y1,0, z1,1], [z1,1, z2,1] ∈ Idgri(Cgri
k ). Now let Q = 〈z1,0, y1,1, z1,1 . . . zk,1〉T ∗2 . Since

(((Cgri
k )(0))−) = 0, (((Cgri

k )(1))+) = 0 and (((Cgri
k )(1))−)k = 0,

it is easily checked that Q ⊆ Idgri(Cgri
k ).

Let f be a (Z2, ∗)-identity of Cgri
k of degree t. Since the (Z2, ∗)-identities of

a unitary ∗-superalgebra follow from the proper ones, we may assume f is proper.
Now, if reduce the polynomial f modulo Q then we obtain: f is the zero polynomial
if t ≥ k; and f = αz1,1 · · · zt,1 if t ≤ k − 1. In this second case, if α = 0, by
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evaluating zi,1 = E1, for all 1 ≤ i ≤ t, we get f = αEt
1 6= 0, a contradiction, because

f ∈ Idgri(Cgri
k ). Hence, we must have α = 0, and so, Idgri(Cgri

k ) = Q.

This also proves that in case t ≤ k − 1, the polynomial z1,1 · · · zt,1 forms a
basis of the multilinear proper polynomials of degree t modulo Idgri(Cgri

k ). Hence
γgrit (Cgri

k ) = 1 for 0 ≤ t ≤ k − 1 and γgrit (Cgri
k ) = 0 for t ≥ k. Then we get

cgrin (Cgri
k ) =

k−1∑
j=0

(
n

j

)
.

Notice that, by Lemma 2.2.1, we have Cgri
2 ∼T ∗2 N

gri
2 .

Next we prove that Cgri
k generates the only minimal ∗-supervariety of polynomial

growth in vargri(Dgri).

Remark 3.1.15. We may see Dgri only as a superalgebra by establishing Dgri =
D(0) ⊕ D(1), where D(0) = ((Dgri)(0))+ and D(1) = ((Dgri)(1))−. This way, we have
vargr(Dgri) = vargr(F ⊕ cF ), with c2 = 1. Hence, the classification of the ∗-
superalgebras, up to T 2

∗ -equivalence, inside vargri(Dgri) and the classification of the
superalgebras inside the vargr(F ⊕ cF ), with c2 = 1, are equivalent.

By using [4, Proposition 4], this equivalence also implies that if A ∈ vargri(Dgri)
has polynomial growth then

A ∼T ∗2 (B1 ⊕ . . .⊕Bm),

for some finite dimensional ∗-superalgebras Bi, 1 ≤ i ≤ m such that dim Bi
J(Bi)

≤ 1,

for all 1 ≤ i ≤ m. It means that either Bi
∼= J(Bi) is nilpotent or Bi

∼= F + J(Bi).

The next result is a consequence of Lemma 3.1.3.

Corollary 3.1.16. Let A = F +J be a ∗-superalgebra with J = J11 +J10 +J01 +J00.
If A ∈ vargri(Dgri) then J10 = J01 = 0.

Lemma 3.1.17. For any k ≥ 2, Cgri
k generates a minimal ∗-supervariety of poly-

nomial growth.

Proof. By Remark 3.1.15, if A ∈ vargri(Cgri
k ) generates a subvariety of vargri(Cgri

k )
and cgri(A) ≈ qnk−1, for some q > 0, we may assume that

A = B1 ⊕ . . .⊕Bm,

where B1, . . . , Bm are finite dimensional ∗-superalgebras such that dim Bi
J(Bi)

≤ 1, for
all 1 ≤ i ≤ m.

Also, by the proof of Lemma 3.1.5 we can assume that A is a unitary algebra.
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Now, since cgrin (A) ≈ qnk−1 then cgrin (A) =
k−1∑
j=0

(
n
j

)
γgrij (A), and, by Proposition

1.3.7, we must have γgrij (A) 6= 0 for all 1 ≤ j ≤ k − 1. Since A ∈ vargri(Cgri
k ), we

have γgrij (A) ≤ γgrij (Cgr
k ) = 1. It implies that cgrin (A) = cgrin (Cgri

k ) for all n, thus

A ∼T ∗2 C
gri
k .

Now we are in position to classify the subvarieties of vargri(Dgri).

Theorem 3.1.18. Let A be a ∗-superalgebra such that vargri(A) ( vargri(Dgri).
Then either A ∼T ∗2 N or A ∼T ∗2 C⊕N or A ∼T ∗2 C

gri
k ⊕N , for some k ≥ 2, where

N is a nilpotent ∗-superalgebra and C is a commutative ∗-superalgebra with trivial
grading and trivial involution.

Proof. By Theorem 1.4.6, if vargri(A) ( vargri(Dgri), then cgrin (A) ≈ qnk−1 for some
r ≥ 0. By the Remark 3.1.15 we may assume that

A = B1 ⊕ . . .⊕Bm,

where B1, . . . , Bm are finite dimensional ∗-superalgebras such that dim Bi
J(Bi)

≤ 1, for
all 1 ≤ i ≤ m. By using the same arguments as in the proof of Theorem 3.1.6 we
may write A = B1 ⊕ . . .⊕Bm = B ⊕N and

cgrin (A) = cgrin (B) =
k−1∑
j=0

(
n

j

)
γgrij (B),

for n large enough, where B is a unitary ∗-superalgebra.

If k = 1, then Γgri1 ⊆ Idgri(B), hence B is commutative with trivial grading and
trivial involution, then A ∼T ∗2 C ⊕ N . If k ≥ 2, this implies that Γgrik ⊆ Idgri(B),

and so B ∈ vargri(Cgri
k ). By Lemma 3.1.17, we have Cgri

k generates a minimal ∗-
supervariety of polynomial growth and since cgrin (B) ≈ qnk−1 and cgrin (Cgri

k ) ≈ q′nk−1

we obtain that B ∼T ∗2 C
gri
k , then A ∼T ∗2 C

gri
k ⊕N.

A consequence of the previous theorem is the classification of all the ∗-super-
algebras generating minimal varieties lying in vargri(Dgri).

Corollary 3.1.19. A ∗-superalgebra A ∈ vargri(Dgri) generates a minimal ∗-super-
variety of polynomial growth if and only if A ∼T ∗2 C

gri
k , for some k ≥ 2.

Next we describe the sequences of ∗-graded cocharacter and of ∗-graded colengths
of the only minimal variety lying in vargri(Dgri). As we have noticed before, these
descriptions correspond to those ones for the superalgebra Ck given by Nascimento,
dos Santos and Vieira in [26, Theorem 8.3].

Theorem 3.1.20. For k ≥ 2, χgrin (Cgri
k ) =

k−1∑
j=0

χ(n−j),∅,∅,(j) and lgrin (Cgri
k ) = k.
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Proof. For any 0 ≤ j ≤ k − 1 we consider the highest weight vector f〈λ〉 = yn−j1,0 z
j
1,1

corresponding to the multipartition 〈λ〉 = ((n − j),∅,∅, (j)). Since j ≤ k − 1, by
evaluating y1,0 = Ik and z1,1 = E1, we get f〈λ〉 = Ej

1 6= 0, and so m((n−j),∅,∅,(j)) 6= 0,
for all j = 0, . . . , k − 1.

Thus by using Theorem 3.1.14 we have

cgrin (Cgri
k ) ≥

k−1∑
j=0

d((n−j),∅,∅,(j)) =
k−1∑
j=0

(
n

j

)
= cgrin (Cgri

k ).

We conclude that m((n−j),∅,∅,(j)) = 1, for all j = 1, . . . , k and zero in other cases.
Hence

χgrin (Cgri
k ) =

k−1∑
j=0

χ((n−j),∅,∅,(j)) and so lgrin (Cgri
k ) = k.

3.2 Some ∗-superalgebras with small ∗-graded co-

length

For k ≥ 1 we denote by Gk the Grassmann algebra with 1 on a k-dimensional
vector space over F , i.e.,

Gk = 〈1, e1, . . . , ek|eiej = −ejei〉.

We write Gk to mean Gk with trivial grading and write Ggr
k to mean Gk with

canonical grading.

We also consider three involutions on Gk denoted by τ , ψ and ρ defined by

τ : ei 7→ −ei, ψ : ei 7→ ei and ρ : ei 7→ (−1)iei,

for all 1 ≤ i ≤ k. We denote by G2,∗ and Ggr
2,∗ the algebras G2 and Ggr

2 , respectively,
endowed with the involution ∗ = τ , ∗ = ψ or ∗ = ρ. Observe that G2,∗ and Ggr

2,∗ are
∗-superalgebras if ∗ = τ , ∗ = ψ or ∗ = ρ.

The algebra G2,τ was initially studied by La Mattina and Misso in [22, Lemma
16] as an ∗-algebra, where the authors calculated its T ∗-ideal and its ∗-codimension.
After in a joint work with La Mattina and Vieira [23], we describe the ∗-cocharacter
of G2,τ and study the ∗-algebra G3,τ . Here we present such results in ∗-superalgebra
language.

Lemma 3.2.1. For the ∗-superalgebras G2,τ and G3,τ we have

1. Idgri(G2,τ ) = 〈y1,1, z1,1, [y1,0, y2,0], [y1,0, z2,0], z1,0z2,0 + z2,0z1,0, z1,0z2,0z3,0〉T ∗2 ;
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2. cgrin (G2,τ ) = 1 + n+
n(n− 1)

2
;

3. χgrin (G2,τ ) = χ(n),∅,∅,∅ + χ(n−1),∅,(1),∅ + χ(n−2),∅,(12),∅ and lgrin (G2,τ ) = 3.

4. Idgri(G3,τ ) = 〈y1,1, z1,1, [y1,0, y2,0], [y1,0, z2,0], z1,0z2,0 + z2,0z1,0, z1,0z2,0z3,0z4,0〉T ∗2 ;

5. cgrin (G3,τ ) = 1 + n+
n(n− 1)

2
+
n(n− 1)(n− 2)

6
;

6. χgrin (G3,τ ) = χ(n),∅,∅,∅ + χ(n−1),∅,(1),∅ + χ(n−2),∅,(12),∅ + χ(n−3),∅,(13),∅ and
lgrin (G3,τ ) = 4.

Proof. We will prove the results about the ∗-superalgebra G2,τ and, using similar
argument, we can prove the results about G3,τ .

Let I = 〈y1,1, z1,1, [y1,0, y2,0], [y1,0, z2,0], z1,0z2,0+z2,0z1,0, z1,0z2,0z3,0〉T ∗2 . By noticing

that (G
(0)
2,τ )

+ = spanF{1} and (G
(0)
2,τ )
− = spanF{e1, e2, e1e2}, we can check that

I ⊆ Idgri(G2,,τ ). Moreover, we can see that the polynomials

y1,0 · · · yn,0, y1,0 · · · ŷi,0 · · · yn,0zi,0, y1,0 · · · ŷi,0 · · · ŷj,0 · · · yn,0zi,0zj,0, 1 ≤ i < j ≤ n,

generate P gri
n (mod P gri

n ∩ I). We claim that they are linearly independent modulo
Idgri(G2,τ ).

If f ∈ P gri
n ∩ Idgri(G2,τ ) is a linear combination of the above polynomials,

by multihomogeneity of T ∗2 -ideals we may write that either f = αy1,0 · · · yn,0, or
f = βy1,0 · · · yn−1,0zn,0, or f = δy1,0 · · · yn−2,0zn−1,0zn,0. If we evaluate y1,0 = . . . =
yn,0 = 1 we get α = 0. If we evaluate y1,0 = . . . = yn−1,0 = 1, zn,0 = e1 we have
β = 0. Finally if we evaluate y1,0 = . . . = yn−2,0 = 1, zn−1,0 = e1, zn,0 = e2 we obtain
δ = 0. Then this implies f ∈ P gri

n ∩ I and so Idgri(G2,τ ) = I. This also proves that
the above polynomials form a basis of P gri

n (mod P gri
n ∩ Idgri(G2,τ )) and so

cgrin (G2,τ ) = 1 + n+
n(n− 1)

2
.

In order to prove that χgrin (G2,τ ) = χ(n),∅,∅,∅ + χ(n−1),∅,(1),∅ + χ(n−2),∅,(12),∅, we
start by noticing that

d(n),∅,∅,∅ + d(n−1),∅,(1),∅ + d(n−2),∅,(12),∅ = 1 + n+
n(n− 1)

2
= cgrin (G2,τ ).

Then, since m(n),∅,∅,∅ = 1, we just need to find a highest weight vector for each
multipartitions ((n − 1),∅, (1),∅) and ((n − 2),∅, (12),∅) which is not a (Z2, ∗)-
identity of G2,τ , to conclude that χgrin (G2,τ ) has the wished decomposition.

In fact, let f = yn−1
1,0 z1,0 and g = yn−2

1,0 [z1,0, z2,0] be the highest weight vectors asso-
ciated to the multipartitions ((n−1),∅, (1),∅) and ((n−2),∅, (12),∅), respectively,
and corresponding to the multitableaux:

( 1 2 · · · n− 1 , ∅ , n , ∅ ) and
(

1 2 · · · n− 2 , ∅ ,
n− 1

n
, ∅

)
,

(3.2.1)
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By evaluating y1,0 = 1, z1,0 = e1 and z2,0 = e2, we get f = e1 6= 0 and g = 2e1e2 6=
0; then f and g are not (Z2, ∗)-identities of G2,∗ and the proof is complete.

Next, we study the ∗-superalgebra Ggr
2 endowed with the involution τ , ψ and ρ.

We have the following:

Lemma 3.2.2. For the algebra Ggr
2,τ we have

1. Idgri(Ggr
2,τ ) = 〈y1,1, z1,0z2,0, z1,0z1,1, [y1,0, y2,0], [y1,0, z1,0], z1,1z2,1+z2,1z1,1, z1,1z2,1z3,1〉T ∗2

and cgrin (Ggr
2,τ ) = 1 + 2n+

n(n− 1)

2
;

2. χgrin (Ggr
2,τ ) = χ(n),∅,∅,∅ + χ(n−1),∅,(1),∅ + χ(n−1),∅,∅,(1) + χ(n−2),∅,∅,(12) and

lgrin (Ggr
2,τ ) = 4.

3. Idgri(Ggr
2,ψ) = 〈z1,1, z1,0z2,0, z1,0y1,1, [y1,0, y2,0], [y1,0, z1,0], y1,1y2,1+y2,1y1,1, y1,1y2,1y3,1〉T ∗2

and cgrin (Ggr
2,ψ) = 1 + 2n+

n(n− 1)

2
;

4. χgrin (Ggr
2,ψ) = χ(n),∅,∅,∅ + χ(n−1),(1),∅,∅ + χ(n−1),∅,∅,(1) + χ(n−2),(1),∅,(1) and

lgrin (Ggr
2,ψ) = 4.

5. Idgri(Ggr
2,ρ) = 〈z1,0, z1,1z2,1, y1,1y2,1, [y1,0, y1,1], [y1,0, z1,1], y1,1z1,1 + z1,1y1,1〉T ∗2 and

cgrin (Ggr
2,ρ) = 1 + 2n+

n(n− 1)

2
;

6. χgrin (Ggr
2,ψ) = χ(n),∅,∅,∅ + χ(n−1),(1),∅,∅ + χ(n−1),∅,∅,(1) + χ(n−2),(1),∅,(1) and

lgrin (Ggr
2,ρ) = 4.

Proof. First we consider Ggr
2,τ and notice that we have ((Ggr

2,τ )
(0))+ = spanF{1},

((Ggr
2,τ )

(0))− = spanF{e1e2}, and ((Ggr
2,τ )

(1))− = spanF{e1, e2}.

Let J = 〈y1,1, z1,0z2,0, z1,0z1,1, [y1,0, y2,0], [y1,0, z1,0], z1,1z2,1 + z2,1z1,0, z1,1z2,1z3,1〉T ∗2 .
We can see J ⊆ Idgri(Ggr

2,,τ ) and that the polynomials

y1,0 · · · yn,0, y1,0 · · · ŷi,0 · · · yn,0zi,0, y1,0 · · · ŷi,0 · · · yn,0zi,1, y1,0 · · · ŷi,0 · · · ŷj,0 · · · yn,0zi,1zj,1,

1 ≤ i < j ≤ n, generate P gri
n (mod P gri

n ∩ J). We claim that they are linearly
independent modulo Idgri(Ggr

2,τ ).

If f ∈ P gri
n ∩ Idgri(Ggr

2,τ ) is a linear combination of the above polynomials,
by multihomogeneity of T ∗2 -ideals we may write that either f = δy1,0 · · · yn,0 or
f = αy1,0 · · · yn−1,0zn,0, or f = βy1,0 · · · yn−1,0zn,1, or f = γy1,0 · · · yn−2,0zn−1,1zn,1. If
we evaluate y1,0 = . . . = yn,0 = 1 we get δ = 0. If we evaluate y1,0 = . . . = yn−1,0 =
1, zn,0 = e1e2 and zn,1 = e1 we have α = β = 0. Finally, if we evaluate y1,0 = . . . =
yn−2,0 = 1, zn−1,1 = e1, zn,1 = e2 we obtain γ = 0. Then this implies f ∈ P gri

n ∩ J
and so Idgri(G2,τ ) = J . Moreover, this also proves that the above polynomials form

a basis of P gri
n (mod P gri

n ∩ Idgri(G
gr
2,τ )) and so cgrin (Ggr

2,τ ) = 1 + 2n+
n(n− 1)

2
.
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In order to prove that χgrin (Ggr
2,τ ) has the wished decomposition, we start by

noticing that

d(n),∅,∅,∅+d(n−1),∅,(1),∅+d(n−1),∅,∅,(1)+d(n−2),∅,∅,(12) = 1+2n+
n(n− 1)

2
= cgrin (Ggr

2,τ ).

Then, since m(n),∅,∅,∅ = 1, we just need to find a highest weight vector for
each multipartitions ((n−1),∅, (1),∅), ((n−1),∅,∅, (1)) and ((n−2),∅,∅, (12)),
which is not a (Z2, ∗)-identity of Ggr

2,τ to conclude that χgrin (Ggr
2,τ ) has the wished

decomposition.

We consider f = yn−1
1,0 z1,0, g = yn−1

1,0 z1,1 and h = yn−2
1,0 [z1,1, z2,1], the stan-

dart highest weight vectors associated to the multipartitions ((n − 1),∅, (1),∅),
((n− 1),∅,∅, (1)) and ((n− 2),∅,∅, (12)), respectively.

By making the evaluation y1,0 = 1, z1,0 = e1e2, z1,1 = e1 and z2,1 = e2, we get
f = e1e2 6= 0, g = e1 6= 0 and h = 2e1e2 6= 0; then f, g and h are not (Z2, ∗)-identities
of Ggr

2,∗ and we have

χgrin (Ggr
2,τ ) = χ(n),∅,∅,∅ + χ(n−1),∅,(1),∅ + χ(n−1),∅,∅,(1) + χ(n−2),∅,∅,(12).

We can easily prove the results about Ggr
2,ψ and Ggr

2,ρ by noticing that

((Ggr
2,ψ)(0))+ = spanF{1}, ((Ggr

2,ψ)(0))− = spanF{e1e2}, ((Ggr
2,ψ)(1))+ = spanF{e1, e2},

((Ggr
2,ρ)

(0))+ = spanF{1, e1e2}, ((Ggr
2,ρ)

(1))− = spanF{e1}, ((Ggr
2,ρ)

(1))+ = spanF{e2},

and following the same arguments of the first part of this lemma.

Now we denote by Ggri
2,τ and Ggri

2,ρ to be the ∗-superalgebra G2 with the grading
G2 = (F1+Fe1)⊕(Fe2+Fe1e2) and endowed by the involution τ and ρ, respectively.

Lemma 3.2.3. For the algebras Ggri
2,τ and Ggri

2,ρ we have

1. Idgri(Ggri
2,τ ) = 〈y1,1, z1,0z2,0, z1,1z2,1, [y1,0, y2,0], [y1,0, z1,0], z1,0z1,1 + z1,1z1,0〉T ∗2 ;

2. Idgri(Ggri
2,ρ) = 〈z1,1, z1,0z2,0, y1,1y2,1, [y1,0, y2,0], [y1,0, z1,0], z1,0yz,1 + yz,1z1,0〉T ∗2 ;

3. cgrin (Ggri
2,τ ) = cgrin (Ggr

2,ρ) = 1 + 2n+
n(n− 1)

2
;

4. χgrin (Ggri
2,τ ) = χ(n),∅,∅,∅ + χ(n−1),∅,(1),∅ + χ(n−1),∅,∅,(1) + χ(n−2),∅,(1),(1)

5. χgrin (Ggri
2,ρ) = χ(n),∅,∅,∅ + χ(n−1),∅,(1),∅ + χ(n−1),(1),∅,∅ + χ(n−2),(1),(1),∅

6. lgrin (Ggri
2,τ ) = lgrin (Ggri

2,ρ) = 4.
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Proof. Similarly to the previous lemma, we can easily check these results by noticing
that

((Ggri
2,τ )

(0))+ = spanF{1}, ((Ggri
2,τ )

(0))− = spanF{e1}, ((Ggri
2,τ )

(1))− = spanF{e2, e1e2},

((Ggri
2,ρ)

(0))+ = spanF{1}, ((Ggri
2,ρ)

(0))− = spanF{e1}, ((Ggri
2,ρ)

(1))+ = spanF{e2, e1e2}.

Moreover, we also can obtain the following results.

Lemma 3.2.4. For the algebras G2,τ ⊕ C3,∗, G2,τ ⊕ Cgr
2 and G2,τ ⊕ Cgri

2 we have

1. cgrin (G2,τ⊕C3,∗) = n2 +1 and cgrin (G2,τ⊕Cgr
2 ) = cgrin (G2,τ⊕Cgr

2 ) =
n2 + 3n+ 2

2

2. χgrin (G2,τ ⊕ C3,∗) = χ(n),∅,∅,∅ + χ(n−1),∅,(1),∅ + χ(n−2),∅,(12),∅ + χ(n−2),∅,(2),∅;

3. χgrin (G2,τ ⊕ Cgr
2 ) = χ(n),∅,∅,∅ + χ(n−1),∅,(1),∅ + χ(n−2),∅,(12),∅ + χ(n−1),(1),∅,∅;

4. χgrin (G2,τ ⊕ Cgri
2 ) = χ(n),∅,∅,∅ + χ(n−1),∅,(1),∅ + χ(n−2),∅,(12),∅ + χ(n−1),∅,∅,(1);

5. lgrin (G2,τ ⊕ C3,∗) = lgrin (G2,τ ⊕ Cgr
2 ) = lgrin (G2,τ ⊕ Cgri

2 ) = 4.

We finish this section by presenting the ∗-superalgebra D∗ ⊕Dgr ⊕Dgri whose
proprieties will be important in order to classify the ∗-supervarieties with ∗-colength
bounded by 3.

Lemma 3.2.5. For the ∗-superalgebra S = D∗ ⊕Dgr ⊕Dgri we have:

1. Idgri(S) = 〈z1,0y1,1, z1,0z1,1, y1,1z1,1, [y1,0, y2,0], [y1,0, z1,0], [y1,0, y1,1], [y1,0, z1,1],
[y1,1, y2,1], [z1,0, z2,0], [z1,1, z2,1]〉T ∗2 ;

2. cgrin (S) grows exponentially.

Proof. Let I = 〈z1,0y1,1, z1,0z1,1, y1,1z1,1, [y1,0, y2,0], [y1,0, z1,0], [y1,0, y1,1], [y1,0, z1,1],
[y1,1, y2,1], [z1,0, z2,0], [z1,1, z2,1]〉T ∗2 . Since Idgri(S) = Idgri(D∗)∩Idgri(Dgr)∩Idgri(Dgri)
we have I ⊆ Idgri(S). Let us check the opposite inclusion.

Let f be a (Z2, ∗)-identity of S. Since Dgri is an algebra with 1, we can assume
f is a multilinear proper polynomial of degree t > 0. After reducing the polynomial
f modulo I, we obtain that either f = αz1,0 · · · zt,0, or f = αy1,1 · · · yt,1, or f =
αz1,1 · · · zt,1. Denote by a = (1,−1) and, for all 1 ≤ i ≤ t, make the evaluation
zi,0 = (a, 0, 0), yi,1 = (0, a, 0), zi,1 = (0, 0, a) then we get α 6= 0 in all cases. Since
f ∈ Idgri(S), we must have α = 0 and so Idgri(S) = I.

It also proves that for all t ≥ 1 the polynomials {z1,0 · · · zt,0}, {y1,1 · · · yt,1},
{z1,1 · · · zt,1} form a basis for the proper polynomials of degree t modulo Idgri(S).
Moreover, since D∗, D

gr, Dgri lies in vargri(S) and their ∗-graded codimensions grow
exponentially, it follows that cgrin (S) also grows exponentially.
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For all k, r, t ≥ 1 the ∗-superalgebra Ck,∗ ⊕ Cgr
t ⊕ Cgri

r satisfies all (Z2, ∗)-
identities of D∗ ⊕ Dgr ⊕ Dgri. In particular case, notice that C1,∗, C

gr
1 and Cgri

1

are T 2
∗ -equivalent to F . For example, we have C1,∗ ⊕ Cgr

t ⊕ Cgri
r ∼T 2

∗ C
gr
t ⊕ Cgri

r ,

Ck,∗ ⊕ Cgr
1 ⊕ Cgri

r ∼T 2
∗ Ck,∗ ⊕ Cgri

r and Ck,∗ ⊕ Cgr
t ⊕ Cgri

1 ∼T 2
∗ Ck,∗ ⊕ Cgr

t for all
k, r, t ≥ 1.

We establish the T 2
∗ -ideal, the ∗-graded codimension and the ∗-graded colength

of this algebras in the following result.

Lemma 3.2.6. For all k, r, t ≥ 1 we have

1. Idgri(Ck,∗ ⊕ Cgr
t ⊕ Cgri

r ) = 〈Idgri(S), z1,0 · · · zk,0, y1,1 · · · yt,1, z1,1 · · · zr,1〉T ∗2 ;

2. cgrin (Ck,∗ ⊕ Cgr
t ⊕ Cgri

r ) = 1 +
k−1∑
j=1

(
n
j

)
+

t−1∑
j=1

(
n
j

)
+

r−1∑
j=1

(
n
j

)
;

3. χgrin (Ck,∗ ⊕ Cgr
t ⊕ Cgri

r ) =
k−1∑
j=0

χ(n−j),∅,(j),∅ +
t−1∑
j=1

χ(n−j),(j),∅,∅ +
r−1∑
j=1

χ(n−j),∅,∅,(j)

and lgrin (Ck,∗ ⊕ Cgr
t ⊕ Cgri

r ) = k + t+ r − 2.

Proof. Let Q = 〈Idgri(S), z1,0 · · · zk,0, y1,1 · · · yt,1, z1,1 · · · zr,1〉T ∗2 . It is easily checked
that Q ⊆ Idgri(Ck,∗ ⊕ Cgr

t ⊕ Cgri
r ).

Let f be a (Z2, ∗)-identity of Ck,∗ ⊕ Cgr
t ⊕ Cgri

r of degree m. Since the (Z2, ∗)-
identities of a unitary ∗-superalgebra follow from the proper ones, we may assume
f is proper. Now, if we reduce the polynomial f modulo Q, we obtain that: either
f is the zero polynomial if m ≥ max{k, t, r}; or f = αz1,0 · · · zm,0 if m < k; or
f = αy1,1 · · · ym,1 if m < t; or f = αz1,1 · · · zm,1 if m < r.

In the second case, if m < k and α = 0, by evaluating zi,0 = (E1, 0, 0), for all 1 ≤
i ≤ m, we get f = α(Em

1 , 0, 0) 6= 0, a contradiction, since f ∈ Idgri(Ck,∗⊕Cgr
t ⊕Cgri

r ).
Then we must have α = 0 in the second case. The same result will be found in the
third and fourth case. Hence Idgri(Ck,∗ ⊕ Cgr

t ⊕ Cgri
r ) = Q.

This also proves that in case m < max{k, t, r}, those polynomials form a basis
of the multilinear proper polynomials of degree m modulo Idgri(Ck,∗ ⊕ Cgr

t ⊕ Cgri
r ).

cgrin (Ck,∗ ⊕ Cgr
t ⊕ Cgri

r ) = 1 +
k−1∑
j=1

(
n

j

)
+

t−1∑
j=1

(
n

j

)
+

r−1∑
j=1

(
n

j

)
.

For any 1 ≤ j ≤ k − 1 we consider the highest weight vector f〈λ〉 = yn−j1,0 z
j
1,0

corresponding to the multipartition 〈λ〉 = ((n − j),∅, (j),∅). Evaluating y1,0 =
(Ik, 0, 0) and z1,0 = (E1, 0, 0), we get f〈λ〉 = (Ej

1, 0, 0) 6= 0, since j ≤ k − 1 and so
m((n−j),∅,(j),∅) 6= 0, for all j = 1, . . . , k − 1.

For any 1 ≤ j ≤ t − 1 we consider the highest weight vector f〈λ〉 = yn−j1,0 y
j
1,1

corresponding to the multipartition 〈λ〉 = ((n − j), (j),∅,∅). Evaluating y1,0 =
(0, It, 0) and y1,1 = (0, E1, 0), we get f〈λ〉 = (0, Ej

1, 0) 6= 0, since j ≤ t − 1 and so
m((n−j),(j),∅,∅) 6= 0, for all j = 1, . . . , t− 1.
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For any 1 ≤ j ≤ r − 1 we consider the highest weight vector f〈λ〉 = yn−j1,0 z
j
1,1

corresponding to the multipartition 〈λ〉 = ((n − j),∅,∅, (j)). Evaluating y1,0 =
(0, 0, Ir) and z1,1 = (0, 0, E1), we get f〈λ〉 = (0, 0, Ej

1) 6= 0, since j ≤ r − 1 and so
m((n−j),∅,∅,(j)) 6= 0, for all j = 1, . . . , r − 1.

Since m((n),∅,∅,∅) = 1 and using the codimension, we may conclude that

χgrin (Ck,∗ ⊕ Cgr
t ⊕ Cgri

r ) =
k−1∑
j=0

χ(n−j),∅,(j),∅ +
t−1∑
j=1

χ(n−j),(j),∅,∅ +
r−1∑
j=1

χ(n−j),∅,∅,(j)

and so lgrin (Ck,∗ ⊕ Cgr
t ⊕ Cgri

r ) = k + t+ r − 2.

In particular case, we have the following ∗-graded colength

lgrin (C2,∗⊕Cgr
2 ) = lgrin (Cgr

2 ⊕C
gri
2 ) = lgrin (C2,∗⊕Cgri

2 ) = 3, lgrin (C2,∗⊕Cgr
2 ⊕C

gri
2 ) = 4,

lgrin (C3,∗ ⊕ Cgr
2 ) = lgrin (C3,∗ ⊕ Cgri

2 ) = 4, lgrin (C2,∗ ⊕ Cgr
3 ) = lgrin (Cgr

3 ⊕ C
gri
2 ) = 4 and

lgrin (C2,∗ ⊕ Cgri
3 ) = lgrin (Cgr

2 ⊕ C
gri
3 ) = 4.

3.3 The ∗-superalgebras with ∗-graded colength

bounded by 3

In the previous sections and the previous chapter we saw some ∗-superalgebras
with small ∗-graded colengths. For example: C2,∗, C

gr
2 , C

gri
2 are ∗-superalgebras with

∗-graded colengths equal 2, the direct sum of two distinct ∗-superalgebras among
them has ∗-graded colengths equal 3 and G2,τ also have ∗-graded colengths equal 3.

In this section we shall classify the varieties generated by finite dimensional
∗-superalgebras with sequence of ∗-graded colengths bounded by three. The clas-
sification of the varieties of algebras with involution with sequence of ∗-colengths
bounded by three was recently made in [23], now we want to prove a result in case
of ∗-superalgebras that generalize the result obtained in [23].

In order to prove the main result of this thesis, we still need a few more lemmas
about ∗-superalgebras of type A = F + J . Let us see what happens in this case.

Lemma 3.3.1. If A = F + J is a finite dimensional ∗-superalgebra where
J = J00 ⊕ J01 ⊕ J10 ⊕ J11.

1. [22, Lemma 14] If A2,∗ /∈ vargri(A) then J
(0)
10 = J

(0)
01 = 0.

2. If Agri2 /∈ vargri(A) then J
(1)
10 = J

(1)
01 = 0.

Hence if A2,∗, A
gri
2 /∈ vargri(A) then J10 = J01 = 0.
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Proof. First, suppose that there exists a ∈ J
(0)
10 such that a 6= 0 and so a2 = 0.

Let B be the subalgebra of A generated by 1F , a, a
∗ and let I be the ∗-graded ideal

generated by aa∗, a∗a. Then we can verify that B = B/I is linearly generated by
1F , a, a∗. Notice that B has trivial grading and a+ a∗ is a symmetric element, and
a − a∗ is a skew element. It is easily seen that B ∼= A2,∗ through the isomorphism
ϕ such that ϕ(1F ) = e11 + e44, ϕ(a) = e12, ϕ(a∗) = e34. Hence A2,∗ ∈ vargri(A), a

contradiction. So we must have J
(0)
10 = 0 and J

(0)
01 = (J

(0)
01 )∗ = 0 and the first part of

the lemma is proved.

Similarly, if there exists a ∈ J (1)
10 such that a 6= 0 and so we also have a2 = 0.

Let B be the subalgebra of A generated by 1F , a, a
∗ and let I be the ∗-graded ideal

generated by aa∗, a∗a. Then we can verify that B = B/I is linearly generated by
1F , a, a∗. Notice that a + a∗ is a symmetric odd element and a − a∗ is a skew odd
element. Then we can easily show that B ∼= Agri2 through the isomorphism seen in
the first part of the lemma. Hence Agri2 ∈ vargri(A), a contradiction. So we must

have J
(1)
10 = 0 and J

(1)
01 = (J

(1)
01 )∗ = 0.

In the classification of the ∗-superalgebras with ∗-graded colength at most 3, we
must exclude the ∗-superalgebras A2,∗ and Agri2 , since by Lemmas 2.3.1 and 2.3.9 we
have χgrin (A2,∗) = χgrin (Agri2 ) = 5. So from now on, we will study ∗-superalgebras of
the type F + J11.

Lemma 3.3.2. Let B = F + J11 be a ∗-superalgebra.

1. If Ci,∗ /∈ vargri(B), for i ≥ 2, then zi−1
1,0 ≡ 0 on B.

2. If Cgr
i /∈ vargri(B), for i ≥ 2, then yi−1

1,1 ≡ 0 on B.

3. If Cgri
i /∈ vargri(B), for i ≥ 2, then zi−1

1,1 ≡ 0 on B.

Proof. We will proceed by the same way, in order to prove each item. First suppose
that there exists a ∈ J under the condition of each item such that ai−1 6= 0 and
consider the subalgebra R of B generated by 1 and a over F . Then if I is the ∗-
graded ideal generated by ai, we have the algebra R = R/I has induced involution
and R = span{1, a, a2, . . . , ai−1}. Thus, the correspondence

1 7→ e11 + · · ·+ eii, a 7→ e12 + · · ·+ ei−1 i

defines an isomorphism between:

1. R and Ci,∗, if a ∈ (J
(0)
11 )−. Hence Ci,∗ ∈ vargri(B).

2. R and Cgr
i , if a ∈ (J

(1)
11 )+. Hence Cgr

i ∈ vargri(B).

3. R and Cgri
i , if a ∈ (J

(1)
11 )−. Hence Cgri

i ∈ vargri(B).
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Lemma 3.3.3. Let B = F + J11 be a ∗-superalgebra.

1. If U3,∗ /∈ vargri(B) then [y1,0, y2,0] ≡ 0 on B.

2. If N3,∗ /∈ vargri(B) then [y1,0, z1,0] ≡ 0 on B.

Proof. Suppose, by contradiction, that [y1,0, y2,0] 6≡ 0. Let a, b ∈ (J
(0)
11 )+ be such that

[a, b] 6= 0 and consider the subalgebra R generated by 1, a, b over F , and let I be
the ∗-graded ideal generated by a2, b2, ab + ba. So the ∗-superalgebra R = R/I is
linearly generated by {1, a, b, ab} and we claim that Idgri(R) = Idgri(U3,∗). Clearly
y1,1 ≡ z1,1 ≡ 0, z1,0z2,0 ≡ 0 and [z1,0, y1,0] ≡ 0 are (Z2, ∗)-identities of R, and so,
Idgri(U3,∗) ⊆ Idgri(R).

Let f ∈ P gri
n ∩ Idgri(R) be a multilinear polynomial of degree n. Notice that we

can write f (mod Idgri(U3,∗)) as:

f = αy1,0 · · · yn,0 +
∑

1≤i<j≤n

αijyi1,0 · · · yin−2,0[yi,0, yj,0] +
n∑
i=1

αiyj1,0 · · · yjn−1,0zi,0,

where i1 < i2 < · · · < in−2 and j1 < j2 < · · · < jn−1. By making the evaluations
y1,0 = · · · = yn,0 = 1 and zi,0 = 0 for i = 1, . . . , n, we get α = 0. Also, for a fixed i < j
the evaluation yi,0 = a, yj,0 = b, yk,0 = 1 for k 6∈ {i, j} and zl,0 = 0 for l = 1, . . . , n,,
gives αij = 0. Finally, the evaluation zi,0 = [a, b], yj,0 = 1 for j 6= i gives αi = 0.
Hence f ∈ Idgri(U3,∗), and so, Idgri(R) ⊆ Idgri(U3,∗). Thus U3,∗ ∈ vargri(B) and
the proof of the first part is complete.

The second part of the lemma is proved similarly. We suppose that there exists
a ∈ (J

(0)
11 )+ and b ∈ (J

(0)
11 )− such that [a, b] 6= 0 and consider the subalgebra R

generated by 1, a, b over F and let I be the ∗-graded ideal generated by a2, b2, ab+ba.
So the ∗-superalgebra R = R/I is linearly generated by {1, a, b, ab} and satisfy the
(Z2, ∗)-identities y1,1 ≡ z1,1 ≡ 0, z1,0z2,0 ≡ 0 and [y1,0, y2,0] ≡ 0. Thus Idgri(N3,∗) ⊆
Idgri(R).

By using the same arguments of the first part of the lemma, we can prove that
R ∼T ∗2 N3,∗ and so N3,∗ ∈ vargri(B). And the second part is also proved by contra-
diction.

Lemma 3.3.4. Let B = F + J11 be a ∗-superalgebra.

1. If U gri
3 /∈ vargri(B) then [y1,0, y1,1] ≡ 0 on B.

2. If N gri
3 /∈ vargri(B) then [y1,0, z1,1] ≡ 0 on B.

Proof. Suppose, by contradiction, that [y1,0, y1,1] 6≡ 0. Let a ∈ (J
(0)
11 )+ and b ∈ (J

(1)
11 )+

be such that [a, b] 6= 0 and consider the subalgebra R generated by 1, a, b over F and
let I be the ∗-graded ideal generated by a2, b2, ab + ba. So the ∗-superalgebra R =
R/I is linearly generated by {1, a, b, ab} and we claim that Idgri(R) = Idgri(U gri

3 ).
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Notice that a ∈ (J
(0)
11 )+, b ∈ (J

(1)
11 )+ and ab ∈ (J

(1)
11 )−, so it is clear that z1,0 ≡ 0,

x1,1x2,1 ≡ 0, where xi,1 = yi,1 or xi,1 = zi,1, for i = 1, 2, and [z1,1, y1,0] ≡ 0 are
(Z2, ∗)-identities of R, and so, Idgri(U gri

3 ) ⊆ Idgri(R).

Let f ∈ P gri
n ∩ Idgri(R) be a multilinear polynomial of degree n. We can write f

(mod Idgri(U gri
3 )) as:

f = αy1,0 · · · yn,0 +
∑

1≤i<j≤n

αijyi1,0 · · · yin−2,0[yi,0, yj,1] +
n∑
i=1

αiyj1,0 · · · yjn−1,0zi,1,

where i1 < i2 < · · · < in−2 and j1 < j2 < · · · < jn−1. By making the evaluations
y1,0 = · · · = yn,0 = 1 and yi,1 = zi,1 = 0 for i = 1, . . . , n, we get α = 0. Also, for a
fixed i < j the evaluation yi,0 = a, yj,1 = b, yk,0 = 1 for k 6∈ {i, j}, and zl,1 = 0 for
l = 1, . . . , n, gives αij = 0. Finally, the evaluation zi,1 = ab, yj,0 = 1 for j 6= i gives
αi = 0. Hence f ∈ Idgri(U gri

3 ), and so, Idgri(R) ⊆ Idgri(U gri
3 ). Thus U gri

3 ∈ vargri(B)
and the proof of the first part is complete.

The second part of the lemma is proved similarly, by contradiction. We suppose
that there exists a ∈ (J

(0)
11 )+ and b ∈ (J

(1)
11 )− such that [a, b] 6= 0 and consider the

subalgebra R generated by 1, a, b over F and let I be the ∗-graded ideal generated
by a2, b2, ab + ba. By using the same arguments of the first part of the lemma, we
can prove that R ∼T ∗2 N

gri
3 and so N gri

3 ∈ vargri(B).

Lemma 3.3.5. If B = F + J11 is a ∗-superalgebra such that

1. [z1,0, z2,0] 6≡ 0 then G2,τ ∈ vargri(B).

2. [z1,1, z2,1] 6≡ 0 then Ggr
2,τ ∈ vargri(B).

3. [y1,1, y2,1] 6≡ 0 then Ggr
2,ψ ∈ vargri(B).

Proof. Generally, we start by considering a, b ∈ J under the conditions of each item
such that [a, b] 6= 0. Let R be the subalgebra of B generated by 1, a, b and let I be
the ∗-graded ideal generated by a2, b2, ab + ba. So the ∗-superalgebra R = R/I is
linearly generated by {1, a, b, ab}. Thus, the correspondence

1F 7→ 1, a 7→ e1, b 7→ e2,

defines an isomorphism between:

1. R and G2,τ , if a, b ∈ (J
(0)
11 )−. Hence G2,τ ∈ vargri(B).

2. R and Ggr
2,τ , if a, b ∈ (J

(1)
11 )−. Hence Ggr

2,τ ∈ vargri(B).

3. R and Ggr
2,ψ, if a, b ∈ (J

(1)
11 )+. Hence Ggr

2,ψ ∈ vargri(B).
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Lemma 3.3.6. If B = F + J11 is a ∗-superalgebra such that

1. y1,1z1,1 6≡ 0 then Ggr
2,ρ ∈ vargri(B).

2. z1,0y1,1 6≡ 0 then Ggri
2,ρ ∈ vargri(B).

3. z1,0z1,1 6≡ 0 then Ggri
2,τ ∈ vargri(B).

Proof. We start by assuming that the polynomial is not an (Z2, ∗)-identity for B, so
that there exist elements a, b ∈ J under the condition of each item such that ab 6= 0.
After we consider R to be the subalgebra of B generated by 1F , a, b and I to be the ∗-
graded ideal generated by a2, b2, ab+ ba. Then R = R/I is a ∗-superalgebra linearly
generated by 1F , a, b, ab. Thus, the correspondence 1F 7→ 1, a 7→ e1, b 7→ e2,
defines an isomorphism between:

1. R and Ggr
2,ρ, if a ∈ (J

(1)
11 )− and b ∈ (J

(1)
11 )+. Hence Ggr

2,ρ ∈ vargri(B).

2. R and Ggri
2,ρ, if a ∈ (J

(0)
11 )− and b ∈ (J

(1)
11 )+. Hence Ggri

2,ρ ∈ vargri(B).

3. R and Ggri
2,τ , if a ∈ (J

(0)
11 )− and b ∈ (J

(1)
11 )−. Hence Ggri

2,τ ∈ vargri(B).

Lemma 3.3.7. Suppose that B = F +J11 satisfies the identity z1,0z2,0 +z2,0z1,0 ≡ 0.
If z1,0z2,0z3,0 6≡ 0 then G3,τ ∈ vargri(B).

Proof. Consider a, b, c ∈ (J
(0)
11 )− such that abc 6= 0. Let R be the subalgebra of B

generated by 1, a, b, c. Since z1,0z2,0 + z2,0z1,0 ≡ 0 in R we have a2 = b2 = c2 = 0 and
so R = span{1, a, b, c, ab, ac, bc, abc}. As a consequence, the correspondence

1 7→ 1, a 7→ e1, b 7→ e2, c 7→ e3

defines an isomorphism between R and G3,τ .

Lemma 3.3.8. Let B = F + J11 be a finite dimensional ∗-superalgebra such that
B ∈ vargri(D∗ ⊕ Dgr ⊕ Dgri). If cgrin (B) ≈ ant, for some constant a, then
B ∼T ∗2 B1⊕B2⊕B3 where B1 ∈ vargri(D∗), B2 ∈ vargri(Dgr) and B3 ∈ vargri(Dgri).

Proof. Notice that F +J
(0)
11 is a subalgebra of B. Moreover, by the (Z2, ∗)-identities

of D∗⊕Dgr⊕Dgri, we can show that F + (J
(0)
11 )+ + (J

(1)
11 )+ and F + (J

(0)
11 )+ + (J

(1)
11 )−

are subalgebras of B too. So obviously we have

Idgri(B) ⊆ Idgri((F + J
(0)
11 )⊕ (F + (J

(0)
11 )+ + (J

(1)
11 )+)⊕ (F + (J

(0)
11 )+ + (J

(1)
11 )−)).
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Conversely, let

f ∈ Idgri((F + J
(0)
11 )⊕ (F + (J

(0)
11 )− + (J

(1)
11 )+)⊕ (F + (J

(0)
11 )− + (J

(1)
11 )−))

be a multilinear polynomial of degree n.

Since Idgri(D∗ ⊕Dgr ⊕Dgri) ⊆ Idgri(B), we write f modulo Idgri(B) as either
f = αy1,0 · · · yn,0, or f = αp,qyi1,0 · · · yip,0zj1,0 · · · zjq ,0, or f = αp,qyi1,0 · · · yip,0yj1,1 · · · yjq ,1,
or f = αp,qyi1,0 · · · yip,0zj1,1 · · · zjq ,1, where p+ q = n, i1 < . . . < ip, j1 < . . . < jq.

If f is of the first type, by making the evaluation yi,0 = 1F for all 1 ≤ i ≤
n, we get α = 0 and so f ∈ Idgri(B). If f is of the other types, we also get

f ∈ Idgri(B), since f ∈ Idgri(F + J
(0)
11 ), f ∈ Idgri(F + (J

(0)
11 )+ + (J

(1)
11 )+) and f ∈

Idgri(F + (J
(0)
11 )+ + (J

(1)
11 )−). Hence, we have the equality

Idgri(B) = Idgri((F + J
(0)
11 )⊕ (F + (J

(0)
11 )+ + (J

(1)
11 )+)⊕ (F + (J

(0)
11 )+ + (J

(1)
11 )−)).

Now since F + J
(0)
11 ∈ vargri(D∗), F + (J

(0)
11 )+ + (J

(1)
11 )+ ∈ vargri(Dgr) and

F + (J
(0)
11 )+ + (J

(1)
11 )− ∈ vargri(Dgri), we get the wished result.

At this point, we are in a position to prove the main result of this section which
allows us to classify the varieties generated by a finite dimensional ∗-superalgebra
with ∗-graded colengths bounded by 3, for n large enough.

Theorem 3.3.9. Let A be an finite dimensional ∗-superalgebra over a field F of
characteristic zero. The following conditions are equivalent.

1. lgrin (A) ≤ 3, for n large enough.

2. A2,∗, A
gri
2 , N3,∗, N

gri
3 , U3,∗, U

gri
3 , C4,∗, C

gr
4 , C

gri
4 , G3,τ , G

gr
2,τ , G

gr
2,ψ, G

gr
2,ρ, G

gri
2,τ ,

Ggri
2,ρ, G2,τ ⊕C3,∗, G2,τ ⊕Cgr

2 , G2,τ ⊕Cgri
2 , C3,∗⊕Cgr

2 , C3,∗⊕Cgri
2 , C2,∗⊕Cgr

3 ,

Cgr
3 ⊕ C

gri
2 , C2,∗ ⊕ Cgri

3 , Cgr
2 ⊕ C

gri
3 , C2,∗ ⊕ Cgr

2 ⊕ C
gri
2 /∈ vargri(A).

3. A is T ∗2 -equivalent to N or C ⊕ N or C2,∗ ⊕ N or C3,∗ ⊕ N or Cgr
2 ⊕ N or

Cgr
3 ⊕ N or Cgri

2 ⊕ N or Cgri
3 ⊕ N or C2,∗ ⊕ Cgr

2 ⊕ N or C2,∗ ⊕ Cgri
2 ⊕ N or

Cgr
2 ⊕C

gri
2 ⊕N or G2,τ ⊕N , where N is a nilpotent ∗-superalgebra and C is a

commutative non-nilpotent algebra with trivial involution and trivial grading.

Proof. First, notice that the condition (1) implies the condition (2) since by Lem-
mas 2.3.1, 2.3.9 and by Theorem 2.3.13 we have lgrin (N gri

3 ) = lgrin (U gri
3 ) = lgrin (A2,∗) =

lgrin (Agri2 ) = 5; by Lemma 2.3.5 and Theorems 2.3.7, 3.1.8, 3.1.13, 3.1.20 we have
lgrin (N3,∗) = lgrin (U3,∗) = lgrin (C4,∗) = lgrin (Cgr

4 ) = lgrin (Cgri
4 ) = 4; by Lemmas 3.2.1,

3.2.2, 3.2.3 we have lgrin (G3,τ ) = lgrin (Ggr
2,τ ) = lgrin (Ggr

2,ψ) = lgrin (Ggr
2,ρ) = lgrin (Ggri

2,τ ) =

lgrin (Ggri
2,ρ) = 4 and by Lemmas 3.2.4 and 3.2.6 we also have lgrin (G2,τ ⊕ C3,∗) =



CHAPTER 3. ∗-SUPERALGEBRAS WITH SMALL COLENGTH 80

lgrin (C2,∗ ⊕ Cgr
3 ) = lgrin (Cgr

3 ⊕ Cgri
2 ) = lgrin (C2,∗ ⊕ Cgri

3 ) = lgrin (Cgr
2 ⊕ Cgri

3 ) =
lgrin (G2,τ ⊕ Cgr

2 ) = lgrin (G2,τ ⊕ Cgri
2 ) = lgrin (C2,∗ ⊕ Cgr

2 ⊕ C
gri
2 ) = 4.

Also, the condition (3) implies the condition (1), since for n large enough we
have lgrin (N) = 0, lgrin (C ⊕ N) = 1, by Theorems 3.1.8, 3.1.13, 3.1.20 we have
lgrin (C2,∗⊕N) = lgrin (Cgr

2 ⊕N) = lgrin (Cgri
2 ⊕N) = 2, lgrin (C3,∗⊕N) = lgrin (Cgr

3 ⊕N) =
lgrin (Cgri

3 ⊕N) = 3 and by Lemmas 3.2.1 and 3.2.6 we get lgrin (G2,τ ⊕N) = lgrin (C2,∗⊕
Cgr

2 ⊕N) = lgrin (C2,∗ ⊕ Cgri
2 ⊕N) = lgrin (Cgr

2 ⊕ C
gri
2 ⊕N) = 3.

Suppose now that the condition (2) is satisfied, it means that we exclude all
that twenty-five ∗-superalgebras from vargri(A). Since C4,∗ ∈ vargri(D∗), C

gr
4 ∈

vargri(Dgr), Cgri
4 ∈ vargri(Dgri), A2,∗ ∈ vargri(M∗) and Agri2 ∈ vargri(M gri), it

follows that D∗, D
gr, Dgri,M∗,M

gri /∈ vargri(A). Hence, by Theorem 1.4.9, the ∗-
graded codimensions of A are polynomially bounded. Since A is finite dimensional,
by Theorem 1.4.4, we may assume that

A = B1 ⊕ · · · ⊕Bm

is a direct sum of finite-dimensional ∗-superalgebras where either Bi is nilpotent or
Bi = F + J(Bi).

If Bi is nilpotent for all i, then A is a nilpotent ∗-superalgebra and we are done
in this case.

Therefore we may assume that there exists i = 1, . . . ,m such that Bi = F+J(Bi)
and J(Bi) = J00 ⊕ J01 ⊕ J10 ⊕ J11.

Since A2,∗, A
gri
2 /∈ vargri(Bi), by Lemma 3.3.1, we have J01 = J10 = 0, and

so Bi = (F + J11) ⊕ J00 is a direct sum of ∗-superalgebras. Then we study next
B = F + J11, since J00 is nilpotent.

Since U3,∗, N3,∗, U
gri
3 , N gri

3 , Ggr
2,τ , G

gr
2,ψ, G

gr
2,ρ, G

gri
2,τ , G

gri
2,ρ /∈ vargri(B), by Lemmas

3.3.3, 3.3.4, 3.3.5 (item 2 and 3) and 3.3.6, it follows that all these polynomials are
(Z2, ∗)-identities of B:

[y1,0, y2,0], [y1,0, z1,0], [y1,0, y1,1], [y1,0, z1,1], [y1,1, y2,1], [z1,1, z2,1], z1,1y1,1, z1,0y1,1, z1,0z1,1.

Now we have to consider two different cases [z1,0, z2,0] ≡ 0 and [z1,0, z2,0] 6≡ 0 on B.

Suppose that [z1,0, z2,0] ≡ 0 then we have B ∈ vargri(D∗ ⊕ Dgr ⊕ Dgri), by
Lemma 3.2.5. Since B is also polynomially bounded, by Lemma 3.3.8, we must have
B ∼T ∗2 B1⊕B2⊕B3 where B1 ∈ vargri(D∗), B2 ∈ vargri(Dgr) and B3 ∈ vargri(Dgri).

Now since C4,∗, C
gr
4 , C

gri
4 , C3,∗ ⊕ Cgr

2 , C3,∗ ⊕ Cgri
2 , C2,∗ ⊕ Cgr

3 , C
gr
3 ⊕ C

gri
2 , C2,∗ ⊕ Cgri

3 ,
Cgr

2 ⊕ C
gri
3 , C2,∗ ⊕ Cgr

2 ⊕ C
gri
2 /∈ vargri(B), we must have that B is T ∗2 -equivalent to

either C or C2,∗ or Cgr
2 or Cgri

2 or C3,∗ or Cgr
3 or Cgri

3 or C2,∗ ⊕Cgr
2 or C2,∗ ⊕Cgri

2 or
Cgr

2 ⊕ C
gri
2 .

Now assume that [z1,0, z2,0] 6≡ 0 on B. So G2,τ ∈ vargri(B), by item (1) of Lemma
3.3.5. On the other hand, since G2,τ ⊕C3,∗, G2,τ ⊕Cgr

2 , G2,τ ⊕Cgri
2 /∈ vargri(B) we

must have C3,∗, C
gr
2 , C

gri
2 /∈ vargri(B). Hence, by Lemma 3.3.2, z2

1,0 ≡ y1,1 ≡ z1,1 ≡ 0
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on B. After linearizing z2
1,0 ≡ 0 we get z1,0z2,0 + z2,0z1,0 ≡ 0 on B. Finally, since

G3,τ /∈ vargri(B), by Lemma 3.3.7, we have that z1,0z2,0z3,0 ≡ 0. Hence, by Lemma
3.2.1, Idgri(G2,τ ) ⊆ Idgri(B) and it follows that B is T ∗2 -equivalent to G2,τ .

Recalling that A = B1 ⊕ · · · ⊕ Bm and putting together all pieces, we get the
desired conclusion.

In particular case, we have the following classification of the ∗-supervarieties
with ∗-graded colengths bounded by 2, for n large enough.

Corollary 3.3.10. Let A be an finite dimensional ∗-superalgebra over a field F of
characteristic zero. The following conditions are equivalent.

1. lgrin (A) ≤ 2, for n large enough.

2. A2,∗, A
gri
2 , N3,∗, N

gri
3 , U3,∗, U

gri
3 , C3,∗, C

gr
3 , C

gri
3 , G2,τ , G

gr
2,τ , G

gr
2,ψ, G

gr
2,ρ, G

gri
2,τ ,

Ggri
2,ρ, C2,∗ ⊕ Cgr

2 , C2,∗ ⊕ Cgri
2 , Cgr

2 ⊕ C
gri
2 /∈ vargri(A).

3. A is T ∗2 -equivalent to N or C ⊕N or C2,∗⊕N or Cgr
2 ⊕N or Cgri

2 ⊕N , where
N is a nilpotent ∗-algebra and C is a commutative non-nilpotent algebra with
trivial involution.

Proof. We easily see that the condition (1) implies (2) and the condition (3) im-
plies (1). In order to prove that the condition (2) implies (3), notice that since
A2,∗, A

gri
2 , C3,∗, C

gr
3 , C

gri
3 /∈ vargri(A), it follows thatM∗,M

gri, D∗, D
gr, Dgri /∈ vargri(A).

Hence, by Theorem 1.4.9, the ∗-graded codimensions of A are polynomially bounded.

Moreover, notice that now we are excluding G2,τ from vargri(A), by item (1) of
Lemma 3.3.5, what implies that [z1,0, z2,0] ≡ 0 onA. ThusN3,∗, N

gri
3 , U3,∗, U

gri
3 , C3,∗,

Cgr
3 , C

gri
3 , G2,τ , G

gr
2,τ , G

gr
2,ψ, G

gr
2,ρ, G

gri
2,τ , G

gri
2,ρ /∈ vargri(A) imply that A satisfies all

the (Z2, ∗)-identities of D∗ ⊕Dgr ⊕Dgri, i.e., A ∈ vargri(D∗ ⊕Dgr ⊕Dgri).

The rest of the proof is similar to the first part of the proof of previous theorem.
Since C2,∗ ⊕ Cgr

2 , C2,∗ ⊕ Cgri
2 , Cgr

2 ⊕ C
gri
2 /∈ vargri(A), we will conclude that A is

T ∗2 -equivalent to N or C ⊕ N or C2,∗ ⊕ N or Cgr
2 ⊕ N or Cgri

2 ⊕ N , where N is a
nilpotent ∗-superalgebra and C is a commutative non-nilpotent algebra with trivial
involution and trivial grading.

In conclusion, we have the following classification: for any finite dimensional
∗-superalgebra A and n large enough,

1. lgrin (A) = 0 if, and only if, A ∼T ∗2 N .

2. lgrin (A) = 1 if, and only if, A ∼T ∗2 C ⊕N .

3. lgrin (A) = 2 if, and only if, either A ∼T ∗2 C2,∗ ⊕ N or A ∼T ∗2 Cgr
2 ⊕ N or

A ∼T ∗2 C
gri
2 ⊕N .
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4. lgrin (A) = 3 if, and only if, either A ∼T ∗2 C3,∗ ⊕ N or A ∼T ∗2 Cgr
3 ⊕ N or

A ∼T ∗2 Cgri
3 ⊕ N or A ∼T ∗2 G2,τ ⊕ N or A ∼T ∗2 C2,∗ ⊕ Cgr

2 ⊕ N or

A ∼T ∗2 C2,∗ ⊕ Cgri
2 ⊕N or A ∼T ∗2 C

gr
2 ⊕ C

gri
2 ⊕N ,

where N is a nilpotent ∗-superalgebra and C is a commutative non-nilpotent algebra
with trivial involution and trivial grading.
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Final considerations

The theory of ∗-graded identities of finite dimensional ∗-superalgebras pre-
sented here generalizes the results for algebras with involution. In fact, if A is a
∗-superalgebra with trivial involution, then cgrin (A) = c∗n(A) and lgrin (A) = l∗n(A).

In this thesis, we have classified the varieties generated by a finite dimensional
∗-superalgebra A with ∗-graded colength bounded by 3 by excluding twenty-five
∗-superalgebras from the variety generated by A and giving a complete list of finite
dimensional generating ∗-superalgebras.

In [23], a recent joint work with La Mattina and Vieira, we proved that:

Theorem 3.3.11. Let A be an algebra with involution over a field F of characteristic
zero. The following conditions are equivalent.

1. l∗n(A) ≤ 3, for n large enough.

2. A2,∗, N3,∗, U3,∗, C4,∗, G3,τ , G2,τ ⊕ C3,∗ /∈ var∗(A).

3. A is T ∗-equivalent to N or C ⊕N or C2,∗ ⊕N or C3,∗ ⊕N , G2,τ ⊕N , where
N is a nilpotent ∗-algebra and C is a commutative non-nilpotent algebra with
trivial involution.

Notice that Theorem 3.3.9 generalizes this result, in finite dimensional case, as
expected. In fact, the algebras A2,∗, N3,∗, U3,∗, C4,∗, G3,τ and G2,τ ⊕C3,∗ are the only
∗-superalgebras with trivial grading that appear in the list of the excluded algebras
in Theorem 3.3.9.

In [3], Giambruno and La Mattina proved the equivalence between algebras
whose sequence of codimensions is bounded by a linear function and algebras with
colength bounded by 2. In case of superalgebras and algebras with involution, we
don’t have this equivalence (see [31], [23]). Consequently, this also happens in ∗-
superalgebras case. In fact, the algebras A2,∗ and Agri2 have ∗-graded codimension
bounded by a linear function but the ∗-graded colength of them is 5.

The classification of the algebras A of at most linear codimension growth has
already been made in [12] by Ioppolo and La Mattina, in language of algebras
with superinvolution. In that classification, the authors gave a complete list of
finite dimensional algebras with superinvolution generating the varieties of at most
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linear codimension growth. We would also like to know a classification by excluding
algebras with superinvolution from the variety generated by the algebra A.

For a finite dimensional ∗-superalgebra A, we consider its ∗-graded cocharacter

χgrin (A) =
∑
〈λ〉`〈n〉

m〈λ〉χ〈λ〉

and we would like to classify finite dimensional ∗-superalgebras A such that the
multiplicities m〈λ〉 are bounded by a constant K. Such classification has already been
given in the setting of algebras [24], superalgebras [27] and algebras with involution
[30].

We also would like to obtain a generalization for the Kemer’s result for PI-
algebra, that is, cn(A) is polynomially bounded if, and only if, the sequence of
colengths is bounded by a constant. Such equivalence has already proved in case
of finite generated superalgebras and finite generated algebras with involution by
Vieira in [31] and [30], respectively. It is clear that if lgrin (A) is bounded by a constant
then cgrin (A) is polynomially bounded. Now, we would like to know if the converse
is true.

Finally, it seems to be interesting to study algebras with G-graded involution,
that is, G-graded algebras endowed with a G-graded involution ∗, where G is a
group. In this case, we would like to produce similar results as we have in other
structures.
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