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Abstract

In this thesis, we present the extension of some classical results of PI-theory to
the class of x-superalgebras, that is, superalgebras endowed with a graded involution.
Let ¥V = var9™(A) be a variety generated by a finite dimensional *-superalgebra A
over a field F of characteristic zero. Giambruno, dos Santos and Vieira proved in [9]
that the x-graded codimension sequence of V is polynomially bounded if, and only
if, V does not contain five x-superalgebras: D, the commutative algebra D = FF & F
endowed with the exchange involution and trivial grading; DY the commutative
algebra with grading F(1,1) @ F(1,—1) and endowed with trivial involution; D9
the commutative algebra with non-trivial grading and endowed with the exchange
involution; M, and M9 where M is a suitable 4-dimensional subalgebra of the
algebra of 4 x4 upper triangular matrices, endowed with the reflection involution and
with trivial and non-trivial grading, respectively. As a consequence the algebras D,
D97 DI M, and M9 generate the only varieties generated by finite dimensional
x-superalgebras of almost polynomial growth. We expound here the classification
of all subvarieties of these five varieties of almost polynomial growth, that was
given in [21] and [12] in different contexts. We also exhibit the decompositions
of the x-graded cocharacters of all minimal subvarieties of var?™(D,), vard™(DI"),
vard™ (DI, vard™(M,) and vard™(M9™) and compute their *-graded colengths.
Finally, we classify the varieties generated by finite dimensional x-superalgebras
such that their sequence of x-graded colengths is bounded by three.

Keywords: Polynomial identity, superalgebra, algebra with involution, codimen-
sion, cocharacter, bounded colength.



Resumo expandido

Seja F' um corpo de caracteristica zero, F'(X) a dlgebra associativa livre gerada
por um conjunto enumeravel X sobre F' e seja A uma &algebra associativa sobre F'.
Denotamos por Id(A) C F(X) o T-ideal das identidades polinomiais de A. Escreve-
mos V = var(A) para denotar a variedade gerada pela algebra A e Id(V) = Id(A).
Uma vez que todo T-ideal é um ideal das identidades polinomiais satisfeitas por
uma dada variedade de algebras, muitas vezes é conveniente traduzir um problema
sobre T-ideais numa linguagem de variedade de algebras.

Uma maneira efetiva de estudar T-ideais é determinando alguns invariantes
numéricos que podem ser atribuidos ao T-ideal para dar uma descricao quantitativa.
Um invariante numérico muito 1til é a sequéncia de codimensoes. Tal sequéncia
foi introduzida por Regev em [28] e mede a taxa de crescimento dos polinémios
pertencentes a um 7T-ideal dado. Regev provou que se A é uma Pl-algebra, isto é,
A satisfaz uma identidade polinomial nao nula, entao a sequéncia de codimensoes
cn(A), n = 1,2,..., é limitada exponencialmente. Depois, Kemer mostrou que
dada qualquer PI-algebra A, a sequéncia de codimensoes nao pode ter crescimento
intemediario, isto é, ou cresce exponencialmente ou é polinomialmente limitada.
Kemer também provou que a sequéncia de codimensoes ¢é limitada polinomialmente
se, e somente se, a variedade de algebras gerada por A nao contém a algebra de
Grassmann G de um espacgo vetorial de dimensao infinita e nao contém a &dlgebra
UT,(F) das matrizes triangulares superiores 2 x 2 sobre F. Portanto, var(G) e
var(UTy(F)) s@o as unicas variedades de crescimento quase polinomial.

O estudo das variedades de crescimento polinomial foi feito extensivamente nos
anos sequintes ([3], [5], [19]). Estes resultados foram extendidos para algebras com
estruturas adicionais tais como superalgebras, dlgebras graduadas por um grupo,
algebras com involucao, involucao graduada e superinvolucao, permitindo o estudo
das identidades correspondentes ([4], [7], [8], [9], [12], [17], [20], [21]).

Na literatura, nos temos a classificacao completa de todas as subvariedades das
variedades de crescimento quase polinomial em diferentes linguagens ( [12], [19],
[20], [21]). Os autores também classificam todas as suas subvariedades minimais de
crescimento polinomial. Recordamos que V é uma variedade minimal de crescimento
polinomial n* se assintoticamente ¢, (V) ~ an®, para algum a # 0, e ¢,(U) ~ bnt,
com t < k, para qualquer subvariedade propria i/ de V. A relevancia das variedades
minimais de crescimento polinomial esta no fato de que estas variedades sao os
blocos construtores que permitiram aos autores dar um classificacao completa das
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subvariedades das variedades de crescimento quase polinomial (veja também [6]).

Outro invariante numérico associado a uma algebra A é a sequéncia de cocom-
primentos [,(A) que conta, para cada respresentagao, a multiplicidade dada pelo
nimero de somandos irredutiveis na decomposicao do cocaracter x,(A), paran > 1.
Um problema interessante envolvendo tal invariante é classificar todas as variedades
de algebras tais que a sequéncia de cocomprimentos ¢ limitada por uma constante.
Sabemos que existe uma equivaléncia entre crescimento polinomial e variedade com
cocomprimento limitado por uma constante no caso de Pl-algebras, superalgebras
e algebras com involucdo (ver [24], [27], [30]). Nés ainda nao temos um resultado
similar no caso de superalgebras com involugao graduada ou no caso de algebras
com superinvolucao.

Também é conhecida a classificacao das variedades de algebras tais que a
sequéncia de cocomprimentos é limitada por uma constante fixa, em casos pe-
quenos. Por exemplo, em [3] Giambruno e La Mattina classificaram PI-dlgebras
com sequencia de cocomprimentos limitada por k£ = 2 e depois La Mattina deu em
[18] tal classificacdo para k = 4. Em linguagem de superélgebras, Vieira classificou
em [31] todas as supervariedades tais que a sequéncia de cocomprimentos graduados
¢ limitada por 2. Recentemente, em um trabalho conjunto com La Mattina e Vieira
(ver [23]), nds classificamos todas as variedades de dlgebras com involucao tais que
a sequéncia de cocomprimentos é limitada por 3.

Nesta tese, trabalhamos com superalgebras sobre um corpo de caracteristica
zero munidas de uma involucao tal que as componentes homogéneas sao invariantes
sob a involucdo. Mais precisamente, dizemos que uma superalgebra A = A© ¢ AD
munida de uma involucdo * é uma *-superdlgebra se (A)* = A© e (AD)* = A1),
Neste caso, dizemos que * é uma involucao graduada.

Consideramos a algebra D = F' & F' e denotamos por D, a dlgebra comutativa
D com graduacao trivial e munida da involugao (a,b)* = (b, a), chamada involugao
troca; DY" serd a dlgebra comutativa D com graduagao dada por F(1,1)® F(1,—1)
e munida da involucao trivial, enquanto DI serd a algebra comutativa D com
graduagao F(1,1) @ F(1,—1) e munida da involucao troca.

Em sequida, definimos M como sendo a seguinte subalgebra de UT,(F)

a c 0 O
0b 00

M = 00 b d la,b,c,d € F
0 00 a

Denotamos por M, a algebra M com graduacgao trivial e munida da involugao re-
flexao, i.e. a involugao obtida através da reflexao da matriz ao longo de sua diagonal
secundaria.

Escrevemos M9 para denotar a dlgebra M munida com a involucao reflexao e
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com graduacao dada por

o O O
o O o O
o o OO
< O O O
o O OO
S OO0
o O OO
S Qo o

Em [9], Giambruno, dos Santos e Vieira provaram que uma *-superalgebra de
dimensao finita A tem crescimento polinomial se, e somete se, a variedade gerada por
A nao contém as *-superalgebras D,, D", D9 M, e M9". Consequentemente, estas
cinco x-superalgebras geram as tnicas variedades de crescimento quase polinomial
geradas por x-superalgebras de dimensao finita.

O proposito inicial desta tese era classificar as subvariedades das cinco var-
iedades de crescimento quase polinomial geradas por *-superalgebras de dimensao
finita e explicitar a decomposicao dos cocaracteres *-graduados das subvariedades
minimais encontradas. Ao mesmo tempo, loppolo e La Mattina classificaram em [12]
as subvariedades das variedades geradas por algebras de dimensao finita munidas
de uma superinvolucao e como crescimento quase polinomial. Como a classificacao
deles é uma extensao da nossa, tivemos que avancar um pouco mais. Coletando
os resultados sobre os cocomprimentos x-graduados das x-superalgebras que geram
subvariedades minimais nas variedades de crescimento quase polinomial, obtemos
uma lista de *-superalgebras com cocomprimento *-graduado pequeno. O objetivo
principal desta tese é classificar todas as variedades geradas por *-superalgebras de
dimensao finita tais que a sequéncia de cocomprimentos é limitada por 3, apresen-
tando uma lista completa de x-superdlgebras geradoras de dimensao finita.

Organizamos esta tese em trés capitulos dispostos da seguinte maneira.

No Capitulo 1 recordamos brevemente alguns resultados sobre PI-algebras, su-
peralgebras e dlgebras com involucao, e apresentamos as principais propriedades
sobre x-superalgebras e resultados sobre crescimento polinomial das codimensoes
x-graduadas. Também definimos o principal objeto de estudo desta tese, que é o
cocomprimento *-graduado [9*(A) de uma x-superdlgebra A, e explicamos como
calcula-lo usando vetores de altura maxima.

No Capitulo 2 apresentamos a classificacao das subvariedades das variedades de
crescimento quase polinomial nao-comutativas, var?™(M,) e vard™(M9™). Também
exibimos a decomposicao do cocaracter x-graduado das subvariedades minimais per-
tencentes as variedades vard™(M,) e vard™ (M9"); e calculamos o cocomprimento
x-graduado delas.

No Capitulo 3 classificamos as subvariedades das variedades de crescimento
quase polinomial comutativas, vard™(D,), vard™ (D) e var9™ (D), explicitamos a
decomposicao do cocaracter x-graduado e calculamos o cocomprimento x-graduado
das subvariedades minimais pertencente a elas. Finalmente, estudamos outras -
superalgebras com cocomprimento *-graduado pequeno para enfim caracterizar to-
das as x-superalgebras de dimensao finita que geram variedades com cocomprimento
x-graduado limitado por 3.
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As principais técnicas utilizadas neste trabalho sao métodos da teoria de repre-
sentagoes do grupo simétrico S,, e o estudo do comportamento assintotico dos graus
de S,-representagoes irredutiveis. Sugerimos ao leitor os livros [13] e [14] para o es-

tudo de S,-representacoes e os livros [1] e [11] para mais informagoes sobre a teoria
de PI-algebras.
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Introduction

Let F be a field of characteristic zero, F'(X) be the free associative algebra on a
countable set X over F' and A be an associative algebra over F. Let Id(A) C F(X)
denote the T-ideal of polynomial identities of A. We write V = var(A) to denote
the variety generated by the algebra A and Id(V) = Id(A). Since every T-ideal is
an ideal of polynomial identities satisfied by a given variety of algebras, it is often
convenient to translate a given problem on T-ideals into the language of varieties of
algebras.

An effective way to study T-ideals is that of determining some numerical invari-
ants that can be attached to the T-ideal to give a quantitative description. A very
useful numerical invariant is the sequence of codimensions. Such sequence was in-
troduced by Regev in [28] and measures the rate of growth of the polynomials lying
in a given T-ideal. Regev proved that if A is a Pl-algebra, that is, satisfies a non-
trivial polynomial identity, then the sequence of codimensions ¢,(A4), n = 1,2,...,
is exponentially bounded. Later, Kemer showed that given any Pl-algebra A, the
sequence of codimension cannot have intermediate growth, that is, either grows ex-
ponentially or is polynomially bounded. Kemer also proved that the codimension is
polynomially bounded if, and only if, the variety of algebras generated by A does
not contain the Grassmann algebra G of an infinite dimensional vector space and
also does not contain the algebra UT,(F') of 2 x 2 upper triangular matrices over F'.
Hence, var(G) and var(UT,(F)) are the only varieties of almost polynomial growth.

The study of varieties of polynomial growth was extensively made in later years
(e.g., [3], [5], [19]). These results have been extended to algebras with an additional
structure such as superalgebras, group graded algebras, algebras with involution,
graded involution and superinvolution, allowing to study the corresponding identities
(e [4], [7), 8], [9], [12], [17], [20], [21]).

In literature, we have the complete classification of all subvarieties of the varieties
of almost polynomial growth in different languages (e.g. [12], [19], [20], [21]). The
authors also classify all their minimal subvarieties of polynomial growth. We recall
that V is a minimal variety of polynomial growth n* if asymptotically ¢, (V) ~ an*,
for some a # 0, and ¢, (U) =~ bn', with t < k, for any proper subvariety U of V. The
relevance of the minimal varieties of polynomial growth relies in the fact that these
were the building blocks that allowed the authors to give a complete classification

of the subvarieties of the varieties of almost polynomial growth. (see also [6]).

Another numerical invariant associated to the algebra A is the sequence of
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colengths [,,(A) counting, for each representation, the multiplicity given by the
number of irreducible summands in the decomposition of the cocharacter x,(A),
for n > 1. One interesting problem involving such invariant is to classify all the va-
rieties of algebras such that the sequence of colengths is bounded by a constant. We
know that there is an equivalence between polynomial growth of codimensions and
varieties with sequence of colength bounded by a constant in case of Pl-algebras,
superalgebras and algebras with involution (see [24], [27], [30]). We still don’t have
a similar result in case of superalgebras neither with graded involution nor with
superinvolution.

It is also known the classification of varieties of algebras such that the sequence
of colengths is bounded by a fixed constant in small cases. For example, in [3] Gi-
ambruno and La Mattina classified PI-algebras with sequence of colengths bounded
by k = 2 and later La Mattina, in [18], gave such classification for k = 4. In super-
algebra language, Vieira classified in [31] all supervarieties such that the sequence
of graded colengths is bounded by 2. Recently, in a joint work with La Mattina and
Vieira (see [23]), we classified all the varieties of algebras with involution such that
the sequence of colengths is bounded by 3.

In this thesis, we work with superalgebras over a field of characteristic zero
endowed with an involution such that the homogeneous components are invariant
under the involution. More precisely, we say that a superalgebra 4 = A @ AD
endowed with an involution * is a *-superalgebra if (A®)* = A and (AW)* = AD).
In this case, we say that x is a graded involution.

We consider the algebra D = F' & F' and we denote by D, the commutative
algebra D with trivial grading and endowed with the involution (a,b)* = (b,a),
called exchange involution; D" will be the commutative algebra D with the grading
F(1,1)® F(1,—1) and endowed with trivial involution and D9 will be the commu-
tative algebra D with the grading F'(1,1)® F'(1, —1) and endowed with the exchange
involution.

Next, we define M to be the following subalgebra of UT,(F)

a c 0 O
0 b 00

M = 00 b d la,b,c,d € F
0 00 a

We denote by M, the algebra M with trivial grading and endowed with reflection
involution, i.e. the involution obtained by flipping the matrix along its secondary
diagonal.

We write M9 to denote the algebra M endowed with reflection involution and
with grading given by

a 0 0 0 0 ¢c 00
06 00 0000
000bO0O |’ 0O0O0Cd
0 00 a 0000
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In [9], Giambruno, dos Santos and Vieira proved that a finite dimensional *-
superalgebra A has polynomial growth if, and only if, the variety generated by A
does not contain the *-superalgebras D,, D", D9 M, and M9". As consequence
these five x-superalgebras generate the only varieties of almost polynomial growth
generated by finite dimensional *-superalgebras.

The initial purpose of this thesis was to classify the subvarieties of the five
varieties of finite dimensional *-superalgebras with almost polynomial growth and
to explicit the decomposition of the x-graded cocharacter of the minimal subvarieties
found. At the same time, Ioppolo and La Mattina classified in [12] the subvarieties
of the varieties of finite dimensional superalgebras endowed with a superinvolution
and with almost polynomial growth. Since their classification is an extension of ours,
we have to advance a little more. Collecting the results on the x-graded colengths
of the x-superalgebras that generate minimal subvarieties lying in the varieties of
almost polynomial growth, we obtain a list of x-superalgebras with x-graded small
colength. The main goal of this thesis is to classify all the varieties generated by
finite dimensional x-superalgebras such that the sequence of colengths is bounded
by 3, by giving a complete list of finite dimensional generating x-superalgebras.

We organized this thesis in three chapters disposed in the following way.

In Chapter 1 we briefly recall some results about Pl-algebras, superalgebras and
algebras with involution and present the principal properties of x-superalgebras and
results about the polynomial growth of the x-graded codimensions. We also define
the main object of study of this thesis, that is, the *-graded colength [9"(A) of a
x-superalgebra A, and explain how to calculate it by using highest weight vectors.

In Chapter 2 we present the classification of the subvarieties of the noncommu-
tative varieties of almost polynomial growth, var?™(M,) and vard™(M9™"). We also
exhibit the decomposition of the x-graded cocharacter of the minimal subvarieties
lying in var9™(M,) and vard™(M9"); and compute the *-graded colength of them.

In Chapter 3 we classify the subvarieties of the commutative varieties of almost
polynomial growth, var?"(D,), vary" (D) and var™(D9"), explicit the decompo-
sition of the x-graded cocharacter and calculate the x-graded colength of the minimal
subvarieties lying in them. Finally, we study other x-superalgebras with small x-
graded colength in order to characterize all finite dimensional x-superalgebras that
generate the varieties of x-graded colength bounded by 3.

The main techniques employed in this work are methods of representation theory
of the symmetric group .5,, and computations of the asymptotic behavior for the
degrees of the irreducible S,-representations. We refer to the reader the books [13]
and [14] for the study of S,-representations, and the books [1] and [11] for more
about the theory of Pl-algebras.



Chapter 1

x-Superalgebras

In this chapter we briefly present some results about Pl-algebras, superalgebras
and algebras with involution. We are more interested in superalgebras over a field of
characteristic zero endowed with involution such that the homogeneous components
are invariant under the involution, called *-superalgebras.

Here, we define the free associative x-superalgebra and introduce the x-graded
polynomial identities on *-superalgebras and the x-graded codimension sequence.
We define the main objects of study of this thesis which are the x-graded cocharacter
and x-graded colength sequences of a x-superalgebra A.

We also present the classification of the x-supervarieties with almost polynomial
growth, in finite dimensional case, given in [9]. The authors proved that there exists
only five x-superalgebras under this condition. Such x-superalgebras will be useful to
obtain our main goal, which is to classify the *-superalgebras with *-graded colength
bounded by three.

1.1 Pl-algebras, superalgebras and x-algebras

Let A be an associative algebra over F', a field of characteristic zero. We consider
F(X) to be the free associative algebra on X over F', where X = {z1,25,...} is a
countable set of noncommutative variables. We say that a polynomial f(z,...,z,) €
F(X) is an identity of A if f(a,...,a,) =0 for all aj,...,a, € A and, in this case,
we write f = 01in A. If A satisfies an non-zero identity, we say that A is a Pl-algebra.

We denote by Id(A) = {f € F(X)|f = 0 on A} the ideal of all identities
satisfied by A. We have that Id(A) is a T-ideal of F'(X), i.e., an ideal invariant
under all endomorphisms of F'(X). In [15], Kemer proved that all T-ideal I is
finitely generated by the set of multilinear polynomials, that is, there exist fi,..., fi
multilinear polynomials such that I = (fi,..., f)r, in characteristic zero.

We consider the space P, of all multilinear polynomials of degree n in x4, ..., x,
in the free algebra F'(X). Let S,, be the symmetric group of degree n. If o € S,,, we
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define a natural action on the space P, as follows: o f(z1,...,2n) = f(To@), -+, Tom))-
We have that P
P,(A) = ———
A= 5 AT
has a structure of left S,-module. The dimension of the space P,(A) is called n-th
Py
codimension of A and is denoted by ¢,(A) = dimp P IdA)

Moreover, let y,(A) denote the character of the S,-module P,(A). We have

that its decomposition into irreducible S,-characters is given by x,(A) = Z MAXA

AFn
and x,(A) is called the n-th cocharacter of A. We can also define the n-th colength

of Aasl,(A) = Zm,\-

AFn

For instance, a commutative algebra is a Pl-algebra since [x1, z5] := z129 — 2921,
is an identity of A. If A is a nilpotent algebra, such that A™ = 0, then x; - - -z, is
an identity of A.

Let UT, be the 2 x 2 upper triangular matrix algebra over F. We have that
Id(UTy) = ([x1, x2][x3, 24])7, and ¢, (UT,) grows exponentially.

It is well known that any finite dimensional algebra is also a Pl-algebra. An im-
portant example of infinite dimensional Pl-algebra is the unitary Grassmann algebra
G. We can write

G=(1l,e1,eq,...|ee; =—eje;).

Moreover, we have that G can be written as a direct sum of the vector subspaces
g — spang{ei, .. ... €i |1 <iyp <...<ig, k >0} and

GV = spanpiej,. .. .. Ciopa|l < J1 < ... < Jopy1,p > 0}
We know that 1d(G) = ([x1, z2, x3])7, and ¢,(G) also grows exponentially.

For an algebra A, we denote by var(A) the variety of algebras generated by
A, ie., var(A) = {B|Id(A) C Id(B)}. We say that the algebras A and B are
T-equivalent if and only if Id(A) = Id(B). In this case, we write A ~7 B.

In [28], Regev proved that if A is a Pl-algebra, then the sequence of the codi-
mensions of A is exponentially bounded. In [16], Kemer proved that the sequence
¢n(A) is polynomially bounded if, and only if, neither the infinite dimensional Grass-

mann algebra G nor the algebra UT,(F') of the 2 x 2 upper triangular matrices lie
in var(A).

We recall that an algebra A has almost polynomial growth, if the sequence of
the codimensions of A grows exponentially but the sequence of the codimensions of
any proper subvariety of var(A) is polynomially bounded. Hence G and UT5(F') are
the only algebras of almost polynomial growth.
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If the algebra A has a decomposition A = A® ¢ AW where A© and A®
are subspaces such that A®A© 4 AW AL C AO and A@AD 4 ADAO) C AD),
then we say that A is a Zs-graded algebra or a superalgebra over F' and we write
A= (AD AW,

Let F'(Y U Z) denote the free associative superalgebra, where y; and z; denotes
variables of degree 0 and variables of degree 1, respectively. Let A = (A®, AW)
be a superalgebra over F', a field of characteristic zero. We say that a polynomial
flyi, - Yn, 21, -, 2m) in the free associative superalgebra F' (Y U Z) is a graded
identity of A, if f(a1,...,an,b1,...,by) =0forallas,...,a, € A9 and b,..., b, €
AQ),

If characteristic of F' is equal to zero, the ideal Id9"(A) of the graded identities
satisfied by A is an ideal invariant under all endomorphisms of F' (Y U Z) preserving
the grading and is completely determined by its multilinear polynomials.

We denote by PJ" the space of multilinear polynomials of degree n in yy, 21, ..., Yn, Zn
and if kK = (aq,...,a,;0) is an element of the hyperoctahedral group Zs S,,, we de-
fine a natural action on the space PJ" as follows: ky; = Y,y and kz; = z5) or —243;)
according to whether a,; = 1 or —1, respectively. We consider now the space

P
(P{" N Idor(A))

PI"(A) :=
We denote by ¢9"(A) = dimp P9"(A) the dimension of P,(A), and we call this number
of the n-th graded codimensions of A.

Moreover, P9"(A) has a Zs ! S,-modulo structure and its Zs ! S,-character,
denoted by x9"(A) is called the n-th graded cocharacter of A. By considering the

decomposition into irreducible Zs ! S,-characters y9"(A) = Z M X Au, WE can
A+ ul=n
define the n-th graded colength of A as 19" (A) = Z M-
IA[+[ul=n

For a superalgebra A, we denote by vard"(A) the variety of superalgebras (or
supervariety) generated by A, and we say that the superalgebras A and B are T5-
equivalent (and we write A ~7, B) if, and only if 1d9"(A) = Id9"(B).

Any algebra A can be viewed as a superalgebra with trivial grading, that is,
A= A®{0}. We let UT, and G denote such algebras with trivial grading. So we
easily see that Id" (UTy) = ([y1, yo][ys, ya], 2)1, and 1d7"G = ([y1, yo, y3|, 2)-

Now, we consider G9" = GO @ Q(l), called the canonical grading of the Grass-
mann algebra, and UTy" the algebra UT, with the grading

(o 7)e(00)

We also know that 1d(G*) = ([y1, 0], [y, 2], 2122 + 2221)7, and Id"(UT3") =
<[y17y2]72122>T2.
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Finally, we consider the commutative algebra F@®cF, where ¢* = 1, with grading
(F,cF). We have I (F & cF) = ([yn, ], [y, 2}, [21, 22]), & (F @ cF) = 2" and

o (F @ cF) =370 X))

These five algebras are very useful to characterize superalgebras with sequence
of graded codimension polynomially bounded.

Theorem 1.1.1. [8, Theorem 2] Let V be a variety of superalgebras. Then V has
polynomial growth if and only if G, G& UTy(F), UTy(F)¥, F&cF ¢ V, where ¢ = 1.

As a consequence of this theorem, we have that G,G%" UTy(F), UTy(F)8" and
F®cF are the only supervarieties with almost polynomial growth. Their subvarieties
were completely classified by La Mattina, in [19] and [20].

An anti-automorphism * of order at most 2 of an algebra A over F' is called
an involution that is, (a*)* = a, (a + b)* = a* 4+ b*, (ab)* = a*b*, (aa)* = «aa*,
Va,b € A,Va € F. An algebra A endowed with a involution x is called a x-algebra.

We have A = AT & A~ where AT is the subspace formed by all symmetric
elements, i.e. such that a* = a, and A~ is the subspace of all skew elements, i.e.
such that a* = —a, with a € A.

Let F(X,x) be the free associative algebra with involution on X over F. It
is useful to consider F(X,x) = F (Y UZ) as generated by symmetric and skew
variables. We say that a polynomial f(yi,...,¥n,21,...,2m) € F{(Y UZ) is a *-
identity of A if f(a1,...,an,b1,...,by) =0for all ay,...,a, € AT and by,... b, €
A~

The involution case is analogous the Zy-graded case. The ideal Id*(A) of all -
identities of an F-algebra with involution A is a T*-ideal of F' (Y U Z), i.e., an ideal
invariant under all endomorphisms of F' (Y U Z) commuting with the involution x*,
and is completely determined by its multilinear polynomials.

We consider the space P of all multilinear polynomials of degree n in yq, 21, .. .,
Yn, zn 10 the free algebra with involution F(Y U Z). Let H,, be the hyperoctahedral
group of degree n. If k = (ay,...,a,;0) is an element of the hyperoctahedral group
H,,, we define a natural action on the space P, as follows: ky; = y,;) and kz; = 24(;)
or —zg(;y according to whether a,;) = 1 or —1, respectively. We have that

P*
P(A) = —2——
n(4) PN 1d*(A)

has a structure of left H,-module. The dimension of the space P}(A) is called the
Lo

n-th *-codimension of A and is denoted by ¢} (A) = dimpg W

By considering x(A) the character of the H,-module P}(A), we have that its

decomposition into irreducible H,-characters is given by x:(A) = Z M XA
IX[+]ul=n
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and x (A) is called the n-th x-cocharacter of A. We can also define the n-th *-co-
length of A as [}(A) = Z M-

[Al+[pl=n

For a x-algebra A we denote by var*(A) the variety of x-algebras (or *-variety)
generated by A, i.e. var*(A) = {B|Id*(A) C Id*(B)}. We say that the x-algebras
A and B are T*-equivalents if and only if Id*(A) = Id*(B). In this case, we write
A N B

Notice that if A is a commutative algebra, then the identity map is an involution
of A, and is called the trivial involution.

We consider now the commutative algebra D = F & F' with trivial grading and
exchange involution (a,b)* = (b,a). This algebra was presented by Giambruno and
Mishchenko [7]. We know that Id*(D) = ([y1, v2|, [y, 2], [21, 22]) 1+, (D) = 2™ and

Xn(D) = 300 X(ni).()-

Next, we define M to be the following subalgebra of the algebra UT,(F') of 4 x 4
upper triangular matrices:

a b 0 0
0 ¢c 00

M = 00 ¢ d ca,b,c,d e F
000 a

We consider M endowed with reflection involution, i.e., the involution obtained
by flipping the matrix along its secondary diagonal

*

a b 00 a d 0 0
0coo0]| [0coo0
00cd]|] |100¢cod
0 00 a 0 00 a

This x-algebra was presented and studied by Mishchenko and Valenti, in [25].
We know that Id*(M) = (z129)7- and if x} (M) = Z My X then mey o =1,

[Al+]pl=n

A=(p+q,p)and p= g, forall p,g >0
my, =q+1 if A=(p+q¢pl)and p=g, forallp>1,¢>0
A=(p+¢p) and p= (1), forallp>1,¢>0

and my , = 0, otherwise. Moreover, the sequence of the *-codimensions of M grows
exponentially.

In [7], Giambruno and Mishchenko characterized *-algebras whose sequence of
x-codimensions is polynomially bounded.

Theorem 1.1.2. [7, Theorem 4.7] Let V be a variety of algebras with involution.
Then V has polynomial growth if and only if D, M & V.
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This proves that D and M are the only *-varieties with almost polynomial
growth. The classification of the subvarieties inside them is completely given by La
Mattina and Martino in [21].

Next, we introduce the structure of x-superalgebras, and present some results
that generalize what we see here in the context of Pl-algebras, superalgebras and
algebras with involution.

1.2 x-Superalgebras and the x-graded codimen-
sion

Let F be field of characteristic zero and consider A an associative algebra over F'.
Remind that an involution on the algebra A is just an antiautomorphism of order at
most 2 on A, which we shall denote by *. In this case, we write At = {a € A| a* = a}
and A~ = {a € A| a* = —a} for the sets of symmetric and skew elements of A,
respectively.

An involution * on a superalgebra A = A© @ A®M that preserves the homoge-
neous components A® and AW that is, (A©)* = A® and (AW)* = AD is called
graded involution. A superalgebra A endowed with a graded involution * is called
x-superalgebra.

We remind that if A = (A® @ AM) is a superalgebra, then ¢ € Aut(A) defined
by ¢(ag + a1) = ag — a1, where ag € A® a; € AV is an automorphism of order at
most 2. Moreover, any automorphism ¢ € Aut(A) of order at most 2 determines a
Zy-grading on A by setting A®) = {a + ¢(a)|a € A} and AY = {a — ¢(a)|a € A}.

The connection between the superstructure and the involution on A is given in
the next lemma. The demonstration was made by R. B. dos Santos in his doctoral
thesis and we will omit here.

Lemma 1.2.1. Let A be a superalgebra over a field F' of characteristic different
from 2 endowed with an involution x and @ the automorphism of order at most 2
determined by the superstructure. Then A is a x-superalgebra if and only if x o p =

QDO*-

As a consequence of this lemma, if A is a superalgebra over a field F' of char-
acteristic different from 2 endowed with an involution %, then A is a x-superalgebra
if, and only if, the subspaces A" and A~ are graded subspaces. As a consequence,
any *-superalgebra can be written as a sum of 4 subspaces

A= (A(0)>+ D (A(1)>+ D (A(0)>, D (A(l))f_

Let X be a countable set of noncommutative variables. We write the set X
as the disjoint union of four countable sets X = Yy U Y; U Zy U Z;, where Yy =

{yLanQ,Oa'-'}v Y, = {y1,1792,1,---}a Zy = {21,072’2,07--'} and Z; = {21,172’2,17--'}-
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We can define the free x-superalgebra F = F(X|Zs, *) of countable rank on X by
giving a superstructure on F where we require that the variables of Yy U Z; are
homogeneous of degree 0 and those of Y; U Z; are homogeneous of degree 1. We also
define an involution on F by requiring that the variables of Yy U Y] are symmetric
and those of Zy U Z; are skew.

Consider F© to be the span of all monomials in the variables of X which have
an even number of variables of degree 1 and F™ to be the span of all monomials
in the variables of X which have an odd number of variables of degree 1. Then
(FOy = FO and (FW)* = FO and so F = FO @ FY has a structure of
s-superalgebra. The elements of F are called (Zs, *)-polynomials.

Let

f = f(y1,07 s 7ym,0a y1,17 ce 7yn,17 21,07 ey Zp,Oa Zl,l? ey Zq,l) S f
We say that f is a (Zs, x)-identity for the x-superalgebra A, and we write f =0 on
A, if
f(afo, . ,a;’o,afl, . ,ail,aio, N N R TR ,a;l) =0,
for all afy,...,ahy € (A" afy,. . af, € (AT, afy,... a0 € (AQ)” and

aiy, .- a,, € (AM)~.

It is clear that any algebra with involution * endowed with trivial grading is a
x-superalgebra. Also, notice that for a commutative superalgebra A, the identity
map is a graded involution on A.

The ideal of (Zs, x)-identities of A is the set
Id7"(A) = {f € F|f =0 on A}

and we can notice that Id?"'(A) is a Ty-ideal of F, i.e. an ideal invariant under
all endomorphisms of F that preserves the superstructure and commutes with the
involution.

Since char(F) = 0, Id9"*(A) is determined by its multilinear polynomials and so
we define

Pgri — SpanF{wo’(l) e wU(n)‘O' € STHwi = yi,gi or w; = Zi,giagi = 0, 1}7

the space of multilinear polynomials in the first n variables. As in the ordinary case,
1d9"(A) is finitely generated as a Tj-ideal and we use the notation (fi,..., fm)zy
to indicate that Id9"*(A) is generated, as a Ty-ideal, by fi,..., fm € F.

The dimension of the quotient space

gri A Pgrz
B4 = [doi(A) N P

is called the n-th x-graded codimension of A and it is denoted by cd™(A).
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Given a x-superalgebra A, we shall denote by var?*(A) the variety of *-super-
algebras generated by A, that is, vard™(A) is the class of all x-superalgebras B
such that 1d9"(A) C Id’"(B). Consequently, var?™(A) = var'*(B) if, and only if
Id9"(A) = Id"*(B). In this case, we say that A is Ty -equivalent to B and we denote

We say that a sx-superalgebra A has polynomial growth, if there exist constants
a,t such that c9"(A) < an', for all n > 1. If there exists a constant 8 such that
" (A) ~ B", for all n > 1, then we say that ¢Z*(A) grows exponentially. Moreover,
if V is a variety generated by the *-superalgebra A, then we write c9(V) = ¢9"(A)
and the growth of V is the growth of ¢7" (V).

If A is a x-superalgebra, we can also consider its identities, *-identities and
graded identities. Since we can identify in a natural way P, P¥ and PJ" with suitable
subspaces of P9, in what follows we shall consider Id(A) C Id*(A) C Id"*(A) and
Id(A) C Id9"(A) C Id""(A). The relation among the corresponding codimensions
is given in the following.

Lemma 1.2.2. [9, Lemma 3.1] Let A be a *-superalgebra. Then for any n > 1, we
have

1. calA) < ¢(A) < i A);
2. calA) < 7 (A) < 7i(A);

)

3. cIi(A) < 47, (A).

By [28], remind that an algebra A is a Pl-algebra if, and only if ¢, (A) is expo-
nentially bounded. Thus, as an immediate consequence of the previous lemma, we
have the following.

Corollary 1.2.3. [9, Corollary 3.2] Let A be a *-superalgebra. Then A is a PI-
algebra if, and only if its sequence of *-graded codimensions {cd™(A)}n>1 is expo-
nentially bounded.

Moreover, since any finite dimensional algebra A is a Pl-algebra we have that if
A is a finite dimensional *-superalgebra, then the sequence of x-graded codimensions
{c9(A)},>1 is exponentially bounded.

From now on, we denote by D, the algebra D = F' @& F with trivial grading
and exchange involution (a,b)* = (b,a). We also consider D9 to be the algebra
D = F @ F with grading D = F(1,1) @ F(1,—1) and trivial involution. Then, D,
and D9 are x-superalgebras and we have:

L. 1d9(D,) = (Id*(Dy),y1,1, 211)1y and ¢4 (D,) = ¢ (D,) = 2™;

2. Id9"(D9") = (I1d9" (DY), 210, z11)7y and cIr(DIT) = cIr(DIT) = 2",
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Now, we consider the x-superalgebra D9 to be the commutative algebra D
with the grading F'(1,1) @ F(1,—1) and endowed by the exchange involution.

We say that a polynomial f € P9 is a proper *-polynomial, if it is a linear
combination of elements of the type

Yir, 1 ° Yip,1251,0 °° Z5s,0R04,1 * 7 " Rl 1W1 " - Wiy

where wq,...,w,, are left normed Lie commutators in the variables from
Yo U Zp U Y, U Z;. Notice that the symmetric even variables appear only inside
the commutators.

Lemma 1.2.4. We have 1d9""(D9"") = (210, y1,1)1y and c"*(DI") = 2", for every
n>1.

Proof. Since D9 is a commutative algebra, ((D9)®))~ = 0 and ((D9)M)*+ = 0,
we get 210, y11 € [d9"(DI"") and D9 satisfies the commutators [y1 0, Y2.0], [21.1, Y1.0]
and [z1,1, 20,1]. Let us consider I = (210,y1,1)7;, then we have I C Id9"(D9). Let
us check the opposite inclusion.

Let f be a (Zy, *)-identity of D9, By the standard multilinearization process and
since DI is an algebra with 1, we can assume f is a multilinear proper polynomial of
degree t > 0. After reducing the polynomial f modulo I we obtain f = az11--- 2.
By making the evaluation z;; = (1, —1), forall 1 <i <t¢, we get f = a(1,(—1)") # 0.
But since f € Id9"*(D?""), we must have o = 0 and so [d9"(D9"") = I.

It also proves that for all £ > 1 the polynomial {2 - 21} is a basis for the
proper polynomial of degree ¢t modulo Id9"*(D9"*) and so /"' (D9"*) = 1, for all ¢ > 0.

Hence,
Cgfri(ng') _ Z (n> —9on

=0
O
Recall that M is the algebra
a b 0 0
0 c 00
M = 00 ¢ d la,b,c,d € F
000 a

From now on, we let M, be the algebra M with trivial grading and reflection involu-
tion. Then, M, is a x-superalgebra and we have 1d9""(M,) = (Id*(M.),y1,1, z1.1)1y
and ¢?"'(M,) grows exponentially.

We denote by M9 the algebra M with the grading

a 0 0 0 0 ¢c 00
06 00 0000
000b 0|’ 0O0O0Cd
0 00 a 0000
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and endowed with the reflection involution. Also, M9 is a *-superalgebra and
we have (MO)* = M© (M)~ = {0}, (MW)* = F(eyy + es4) and (MW)~ =
F(e15 — e34). Notice that 219 and 1179 are identities of M9, where x;; = y; 1 or
x;1 = 2i1. Let us denote by I the T;-ideal generated by the polynomials 2o and
X1,1221-

Remark 1.2.5. For any polynomial f € F(X|Zy,*) we have z1;fra; € 1.

Proof. We may clearly assume that f is a monomial of homogeneous degree 0. Since
[ml,h f] € F<X|a ZQa *>(1)7 we get

r11fro1 = [T11, flren + fri1221 =0 (mod I).
]

Theorem 1.2.6. [9, Theorem 6.3] 19" (M9"") = (210, T1,1221)1; . Moreover, c3*(M9™)
grows exponentially.

Proof. Since, by Lemma 1.2.2, ¢ (M,) < ¢Z(M9") and c}(M,) grows exponen-
tially, we get that ¢ (M) grows exponentially. Let I = (21,0, 211%2,1)7;. By the
discussion above, I C Id9"(M9™).

We shall prove that if f € Id9*(M9™), then f =0 (mod I). To this end, we may
clearly assume that f is a multilinear polynomial of degree, say, n. Since [y; 0, yjo] €
I, we have ¥y(1),0° " Yo(n)0 = Y1,0*Yno (mod I) for any o € S,. Moreover, by
Remark 1.2.5 we have z1; fxo; € I, for any polynomial f € F(X|Zy,*). Then we
get that either f = ay10---yno (mod I), for some o € F, or f can be written
(mod ) as a linear combination of monomials of the type

Yir,0 " Yir,001,1Y4111,0 *** Yi 1,0,
where 0 <t <n—1,4; < - <iggand 4441 < -+ < lp_1.

In the first case, by making the evaluation y;o0 = 1, for ¢ = 1,...,n, we get
a=0and so f € I, as wished.

In the second case, write

n—1
= E E Qiy,itYi1,0 ° 0 Yie,001,1Y5401,0 " Yin_1,0 (mod I),

t=0 1<i; <--<it<n—1

with oy, ,;, € F. If for some 4; < --- < 4, oy, 4, # 0, we make the evaluation
Yir0 = " = VYi,0 = €11 + €ad, Yir 10 = " = Yi,_1,0 = €22 + €33 and x11 = e1p + ey,
in case 1, is symmetric, or x1; = ej2 — €34, in case 1, is skew. It is easily seen
that f evaluates to v, . ; (e11 + es)(e12 £ e3q)(€22 + €33) = i, _i,€12 (mod I) and
@i, = 0. Thus, f € I and the proof is complete. O

The following result allows us to assume F' an algebraically closed field, whenever
we are studying the 75 -ideals and the *-graded codimensions.
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Lemma 1.2.7. [9, Lemma 8.1] Let F be a field of characteristic zero, F its al-
gebraic closure and A a *-superalgebra over F. Then the algebra A = A @p F
has an induced structure of x-superalgebra, (ct(A))9" = (cI'(A))9. Furthermore,

! n n

Id9"(A) = I[d9"'(A), viewed as *-superalgebras over F.

1.3 The x-graded cocharacter and the (n)-cocharacter

The wreath product between Zo X Zo and S, is the group defined by

H,, = (Zo X Z2) 1Sy = {((g1, 1), -+, (Gns hn); 0)|(gi, hi) € Zg X Zg,0 € Sy}
with multiplication given by

(91, 80), -+ (gns ha)s 0) (a1, 1), - (@n, b )i 7) = (G, ), - (G Bon); 07),
where g; = g;a,-1(;) and h; = hibs-1(), for all 1 <7 < n.

We have that H, acts on P9 by the following

((917 hl)v ceey (gnv hn)’ U) “Yit, = ya(i),gi—i-gg(i)

(g1, h1)s -y (Gn, hn);0) - 2y, = “o®:9+9010))
T Z0(1),9it90(i) 1

lf ha(i) - 1
if hg(i) = *

The cocharacter of the H,-modulo P9"*(A) is called the n-th *-graded cocharacter
of the x-superalgebra A, and it is denoted by x9™*(A).

For an integer number n > 1, we write n = n; + no + n3z + Ny as a sum
of four non-negative integers and write (n) = (ny,ng,n3,ny). A multipartition
(A) = (A(1),...,A(4)) F (n) is such that A(7) = (A(4)1, A(7)2,...) F ny, for 1 <i < 4.
Since char(F') = 0, there exists a one-to-one correspondence between the irreducible
H.,,-characters and the multipartitions (A\) F (n).

Hence, we can write the H,,-character of P9 as

XHA) = > mpyx s
(MH(n)

where x(y is the irreducible H,-character associated to the multipartition (\) and

my > 0 is the corresponding multiplicity. We denote by [97(A) = Z myy the
(M) (n)
n-th x-graded colength of A.

We define P,y to be the space of multilinear (Z,, *)-polynomials in which the
first n; variables are symmetric of homogeneous degree 0, the next n, variables are
symmetric of homogeneous degree 1, the next nz variables are skew of homogeneous
degree 0 and the next n, variables are skew of homogeneous degree 1.
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We can notice that for any choice of (n) = (ni,ng,ns, ny) there are (<Z>)
subspaces isomorphic to P, where (<Z>) = <n1 n2"n3 m) denotes the multinomial

coefficient and it is clear that P, is embedded into PJ"*. Also we have that

rL Y n
rr= @) o
(n)

Let us consider P, (A) := and ¢y (A) = dimp P,y (A). By the
(

above, it is also clear that

A=Y (<Z>>c<n)(A). (1.3.1)

(n)

Remark 1.3.1. If A and B are x-superalgebras, then A @ B is a *-superalgebra and
Id9" (A @ B) = Id"(A) N Id9"{(B). Furthermore, ¢/ (A & B) < ¢7"(A) + ¢I"(B)
and the equality holds if and only if

Pgri ) Pgri ] Pgri

dim : : ‘ im T + dim L L )
Pi" N Id9mi(A) N 1di(B) P N Ideri(A) Py N 1d9ri(B)

This is equivalent to say that dim P = dim(P¢" N Id9"(A) + PI" N 1d(B)),
and, so, any polynomial in P9 can be written as a sum of multilinear polynomials

in Id"*(A) and in Id""(B).

Similarly cmy(A @ B) = cmy(A) + ¢my(B) if, and only if any polynomial in
P,y can be written as a sum of multilinear polynomials in Py, N Id9*(A) and
in P<n> N ]dgM(B).

According to the construction of the spaces P, with (n) = (n1,n2,n3,14),
Shny X Spy X Spy X Sy, acts on P,y by permuting the respective variables, that is, for
[ € Pyy and (01,...,04) € Sty = Sny X Sp, X Spy X Sp, we have

(0'1, e ,O'4)f(y170, e 7yn1,07 yLl, e ’yng,la 2170, ceey Zn3,07 2,'1’1, ey Zn471) =

T Wor (1,0 - - > Yor(n1),05 Yoo (1)1 - - - s Yora(na), 15 Zog(1),05 - - - » Zorg(ng),05 Zoa(1),1s - - - s Zoa(na),1)

and so P, is a Syy-module. Since T5-ideals are invariant under the given action,
we have that P, (A) also inherits a structure of S,)-module.

It is well known that there exists a one-to-one correspondence between the
irreducible S(,)-characters and the multipartitions (A\) = (n). We also know that
the irreducible S(,)-characters are the outer tensor product of irreducible characters
of Sn,,..., S, respectively. Then, we denote by xx1) ® -+ ® xa@) the irreducible
Smy-character corresponding to (A) and by dyq) - --dya) its degree, where dy) is
given by the hook formula dy = (&>)d,\ld,\2d>\3d/\4.

By complete reducibility, we can write the character x(,(A) of Pyy(A) as

X (A) = Z m/()\)X)\(l) @ Q Xa@); (1.3.2)
(AE(n)
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where my,, are the corresponding multiplicities. We call x(n)(A) the nth (n)-co-
character of A.

The following result establishes a relation between the x-graded cocharacter and
the (n)-cocharacter of a x-superalgebra.

Theorem 1.3.2. If P9"(A) has H,,-character x9"(A Z moyx oy and Py (A)
AE(n)
has Sy -character x Z m YXA(L © @ Xa@4), then mpy = m’w, for

(A (n)
all multipartition () = ()\(1),)\(2),)\(3),>\( )) such that \(i) F n;i=1,2,3,4 and

n=mni+ No +ng 4+ ng4.

Now, we consider Fy,, == Fi (Y10, - - s Umi0s Y11y - - - s Y1y 21,05 - -+ s Zm,0s 2115« - - 5 Zml)
and let = F (Y10, - s Ym0s Y115 - - > Ymds 21,05 « - 5 Zm0s 21,15 - - - » Zm,1) b€ the sub-
space of the homogeneous polynomials with degree n > m. Then GL,, x GL,, X
GL,, x GL,, acts diagonally in F, and so F has a GL,, X GL,,, X GL,,, X GL,,-
modulo structure. We also have that £’ N[ dg”(A) is invariant under this action.

Hence, the space
L
Frn1dori(A)
isa GL,, X GL,, X GL,, x GL,,-modulo. We denote by W9(A), the GL,, X GL,, X
GL,, x GLy,-modulo F(A).

F(A) =

The GL,, xGL,, xGL,, x GL,, representation theory shows that there exists an
one-to-one correspondence between irreducible GL,, x GL,, X GL,, X GL,,-modulos
and multipartitions (A\) = (A(1), A(2), A(3), A(4)) of n such that h()\()) < m, where
h(A(7)) denotes the number of boxes of the first column of A(i),s = 1,2,3,4. We
denote by Wy the irreducible G L,, x GL,, x GL,, x G Ly,-character correspondmg
to the multipartition ().

Since char(F') = 0, we may write

VA = Y mp Ty,

where myy > 0is the respective multiplicity and h((\)) = max{h(A(i)),i = 1,2, 3,4}.

We also have that all irreducible GL,, x GL,, x GL,, x GL,,-modulo from F
is cyclic, and is generated by a non-zero polynomial of the type

A1 A(2)1

H Sthx1) (Y105 - Yna(n H Sthia@) (Y115 - Yna(a2))1)
=1

)\(3)

A(4)1
LT Stroen (o znoeno) T] Sthoan (2, - znoan) > oo

=1 i=1 0ESh
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where o, € F' and the direct action of S,, under F)} is defined as the place per-
mutation. This polynomial fiy is called highest weight vector corresponding to the
multipartition (\).

We consider the multitableaux Ty which is filled by placing the numbers in
ascending order from top to bottom column by column. Its corresponding highest
weight vector is called the standard highest weight vector and we write

H Sth,01) (1,00 - - - Yns(A1)),0 H Stron@) Wit - - Ynr@)1)

(4)1
H Sthn3) (21,05 - - - 5 Zhi(A(3)),0) H Sthyn@) (21,15 - -+ 5 Zha(a@)1)

=1

We consider Tny = (Txay,--.,Thu) a multitableaux. We know that every
polynomial fy) can be written as a unique linear combination of polynomials of the

type

A2)
H Sth,01) (1,05 - - - Yni(21)),0 H Sth,n@) Y115 - - Yni(A@2)),1)

=1
3)1 )\(4)1 ’

H Sth,03) (21,05 - - s Zh(A(3)),0) H Sth,n@) (21,15 - - -5 Zh(A\(4))1)T
=1

where o is the only permutation of S, that changes the standard multitableaux to
the multitableaux T}y . The polynomial fr,,, is called highest weight vector corre-
sponding to the multitableaux Ty).

Theorem 1.3.3. If P9"(A) has H,,-character x9"(A) = Z moyxoy and F(A)
(A (n)
has GLy, X GLy, X GL,, X GLy,-character $9(A) = Z moy ¥y, then we have

(N (n)
h((A))<m

meyy = My, for all multipartition (A) = (A(1), A(2),A(3), A(4)) such that (i) = n;,
i=1,2,3,4, n=ny +ny+ng+ng and h((\)) < m.

Remark 1.3.4. The multiplicity my, # 0 if, and only if, there exists a multitableaux
T}y such that fr,, &1 d9""(A). Furthermore, iy is equal to the maximum number
of vectors fr,,, which are linearly independent in Fy;(A).

Previously, we have presented the cocharacter of D9, under a view of superal-
gebras, and of D, and M,, under a view of x-algebras. Then, it is easy to find the
x-graded cocharacter of these x-superalgebras. We have the following:

L x7*(D.) = Z?:o X(n—j)e.().e and X&' (D) = 370 X(n—j).(i).2.5}

2. If Xg” Z m then m((n)@,@’@) = ]_,
M E(n)

(A)

mey =q+ 1 if <)\>

(A)

((p+q,p), 2, 2,9), for all p,q >0
(p+q,p,1),2,2,9), forallp>1,¢>0

(p+4q,p),9,(1),9), forallp>1,¢>0
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and mgyy = 0 otherwise.

From now on, we will use the representation theory of the general linear group
to compute the decomposition of the x-graded cocharacter of a x-superalgebra.

Lemma 1.3.5. For every n > 1 we have x9"(D9"") = D0 X(n—i)2.2.0)-

Proof. Fixed j > 0, we consider f; = yfaj z{ 1 the standard highest weight vector
corresponding to the multipartition ((n — j), @, @, (j)). By evaluating y10 = (1, 1)
and z;; = (1, —1) we have f;(y1,0,211) = (1, (1)’ ) # 0. Then for all j > 0 we have
Mn—j),2,2,;) = 1 and so

. . n i n . )
CZ’I"L(DQTZ) Z Zd(nfj),g,g,(j) = Z ( ) — CZ”(DQM),

=0 J=0 d
Hence, x3" (D) = 37 X(n—j).2.2.()- -

Theorem 1.3.6. [9, Theorem 6.4] If x9" (M) = Z moyXx oy then

Loif (A > ((n), 2, 2,2)
— CJ+1 if (\)=(p+a¢p),1),2 92)
WY g+, Zf<> ((p+4q.p),2,2,(1))
0, otherwise,

where p,q > 0 and 2p+q+ 1 =n.

Proof. By Theorem 1.2.6, ¢"'(M9"") grows exponentially. Hence, M9 generates a
x-supervariety of exponential growth.

We start by computing the decomposition of the *-graded cocharacter of M9
into irreducible characters. Let

XM =Y mpyx (1.3.3)
V()

be the decomposition of the *-graded cocharacter of M9

Now, since 21 is an identity of M9, if x( appears with non-zero multiplic-
ity in (1.3.3), we must have A\(3) = 0. Moreover, by Remark 1.2.5, two variables of
homogeneous degree 1 cannot appear in any non-zero monomial (mod Id9™(M9"")).
Thus mpy # 0 in (1.3.3) implies that either (\) = (A(1),(1),9,@) or (\) =
(M1),2,,(1)) or (\) = (A\(1),2,9,2). Since dimp((M»)*) = 2, any polyno-
mial alternating on three symmetric variables of homogeneous degree 0 vanishes in
M. By standard arguments this says that myy # 0 implies that A(1) = (p+g¢, p),
where p > 0,q > 0, is a partition with at most two parts.
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As in the proof of the previous theorem, we have that symmetric variables of
homogeneous degree 0 commute (mod Id9"(M9")). Hence, we have that my # 0
implies that either (\) = ((n),2,9,9) or (\) = ((p+ ¢,p),F,9,(1)) or (\) =
(p+4q,p),(1),2,2), where p>0,¢g>0and n=2p+q+ 1.

We claim that m((p4q.p),2,2,(1) = M((p+ap),(1),2,0) = ¢ + 1. To this end, we follow
closely the proof of [25, Lemma 2] (or [29, Theorem 3]), taking into account the due
changes.

Define, for 0 < i < ¢, the polynomials

i A R ~ - ~ q—i
al? (yl,o, Y2.0, 901,1) =YioY1,0 " Y10T1,1Y2,0° " "Y2,0Y10 »
P4 ) U R UJ1,
NV WV

p

p

where — and ~ mean alternation on the corresponding variables and z1; = y; 1 or
X111 = ?1,1-

Then we can show that the polynomials afj,?; are highest weight vectors corre-
sponding to Young multitableaux and they are linearly independent (mod Id9™*(M9™)).
Hence, m(p4q,p),2,2,(1)) = M((p+a.p),(1),2,2) = ¢ + 1 as claimed. Also, through an obvi-
ous evaluation, it is clear that m () z.0,6) = 1, for all n > 1. O

As a consequence of Poincaré-Birkhoff-Witt Theorem, we have that if A is a
x-superalgebras A with 1, then its (Zs, *)-identities follow from its proper (Zs, *)-
identities. Hence, in order to study (Zs, *)-identities of unitary *-superalgebras, we
study the proper ones.

We denote by I'9" the subspace of P¢" of proper #-polynomials and establish
I'Y" = span {1}. The sequence of proper *-graded codimensions is defined as

gri

I A) = dim—2 ,
wA) 97 Ldori(A)

n=012,....

For a unitary s-superalgebra the relation between *-graded codimension and
proper x-graded codimension, is given by

=3 (D), n=012...

- 1
=0

For every ¢ > 1, we have that Fiﬁfi is a consequence of Y™ it means that

Fiﬁi C <Fim>T2*. As a consequence, we have the following.

Lemma 1.3.7. Let A be a x-superalgebra with 1. If for some k > 2, 47" (A) = 0
then v9T(A) = 0 for all m > k.

) Fgm’
Since T'9"(A) = __
9" N Idori(A)
H,,-character 19"*(A), called proper n-th *-graded cocharacter of A.

is a H,-submodulo of P¢"(A), we consider its
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1.4 Almost polynomial growth

In this section, we present some results about the classification of x-superalgebras
with polynomial growth. We start with some results about the structure of x-
superalgebras which were given in [9].

Let A be a x-superalgebra, ¢ the automorphism of order 2 determined by the
Zo-grading and I an ideal of A. We say that I is a *x-graded ideal, if I¥ = [ and
I* = I. A x-superalgebra A is a simple *-superalgebra if A*> # {0} and A has no
non-zero x-graded ideals.

The next theorem is a generalization of Wedderburn-Malcev Theorem.

Theorem 1.4.1. [9, Theorem 7.3] Let A be a finite dimensional *-superalgebra over
a field F of characteristic zero. Then:

1. J(A) is a *-graded ideal;

2. If F is algebraically closed, then A = A1 @--- D Ay, + J(A), where each algebra
A i=1,...,m, is a simple *-superalgebra.

In [9] the authors characterized the finite dimensional simple x-superalgebras
over an algebraically closed field F' of characteristic zero. They also characterized the
finite dimensional *-superalgebras of *-graded codimensions polynomially bounded.

Theorem 1.4.2. [9, Theorem 7.6] Let A be a finite dimensional simple x-superalgebra
over an algebraically closed field F' of characteristic zero. Then A is isomorphic to
one of the following *-superalgebras:

1. My (F), with k > 1,k > 1 > 0, with transpose or symplectic involution (the
symplectic involution can occur only when k =1);

2. My (F)® My, (F)®P, withk > 1, k>1>0, with induced grading and exchange
tnvolution;

3. M,(F)+cM,(F), with involution given by (a+cb)! = a*—cb*, where * denotes
the transpose or symplectic involution,

4. M, (F)+cM,(F), with involution given by (a+cb)" = a*+cb*, where * denotes
the transpose or symplectic involution,

5. (My(F)+ cMy(F)) & (M,(F) + cM,(F))°?, with grading
(Mn(F) & My (F), o(Mn(F) & M, (F)))
and exchange involution.

Theorem 1.4.3. [9, Theorem 8.3] Let A be a finite dimensional x-superalgebra over
an algebraically closed field F of characteristic zero. Then c¢"*(A) is polynomially

bounded if and only if



CHAPTER 1. *-SUPERALGEBRAS 21

1. ¢, (A) is polynomially bounded;

2. A= B+ J(A), where B is a maximal semisimple subalgebra of A with trivial
induced Zo-grading and trivial induced involution.

In [9] the authors proved that a finite dimensional *-superalgebra A has polyno-
mial growth if, and only if, Id9"(A) = Id"*( B) for some finite dimensional *-super-
algebra B having an explicit decomposition into suitable subalgebras with induced
graded involution .

Theorem 1.4.4. [2, Theorem 3.5] Let A be a finite dimensional *-superalgebra
over a field F of characteristic zero. Then ¢d"(A) is polynomially bounded if and
only if vard™(A) = var9 (B, & --- ® B,,), where each B; is a finite dimensional
x-superalgebra over F such that dimp B;/J(B;) <1, for alli=1,...,m.

This result will be very useful in the next chapter. Whenever we want to prove
some property about a x-superalgebra A such that ¢Z*(A) is polynomially bounded,
we can study the properties of x-superalgebras of the type F'+ J, and then recover
the property about A.

Recall that if A = F'+J is a finite dimensional algebra over F' where J = J(A) is
its Jacobson radical, then J can be decomposed into the direct sum of B-bimodules

J = Joo B Jo1 B J10 ® J11 (1.4.1)

where for i € {0, 1}, Jix is a left faithful module or a 0-left module according as i = 1
or ¢ = 0, respectively. In a similar way, J; is a right faithful module or a 0-right
modulo according as k = 1 or k = 0, respectively. Moreover, for i, k,r,s € {0, 1},
Jirdrs € Jis, Jipdrs = 0 for k # r and J;; = BN for some nilpotent subalgebra N of
A commuting with B.

We also have that the given modules are graded and if the algebra A has an
involution *, then Jyy and Ji; are stable under the involution whereas Jj; = Jio.

We say that a s-superalgebra A has almost polynomial growth, or, A is an APG
x-superalgebra, if the sequence of the x-graded codimensions of A grows exponentially
but any proper subvariety of A has polynomial growth.

We have seen in Theorems 1.1.1 and 1.1.2 that var? (D9"), var*(D,) and
var*(M,) are varieties of almost polynomial growth, according to the point of view.
Then we have the following.

Lemma 1.4.5. [9, Theorem 5.1] var9™(D,),vard"(M,) and vard™ (D) are APG
x-supervarieties.

Proof. Since the grading on D, is trivial, we have that

17 (D,) = (Id"(D.), 1.1, 21115
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the Ty-ideal generated by Id*(D.),y11,211. Also ¢d"(D,) = ¢ (D.), hence ¢4"(D,.)
grows exponentially . Let U be a proper subvariety of var?"(D,). Since U C
vard™(D,), we have that y1 1, 211 € Id"*(U). Hence Id"" (U) = (Id*(U), y11, z11)15
" (U) = ¢ (U) and 9" (U) is polynomially bounded. Hence, var?"(D,) is an APG
x-supervariety. Analogously, vary™(M,) is an APG *-supervariety.

Similarly, since D" has trivial involution, we have that
[dgri(DgT) = <[dgr(Dgr)’ 21,0, Z1,1>T2*7

the Tj-ideal generated by Id9"(D9"),z10,211. Also ¢9"(D9") = c4"(DY"), then
9" (D9") grows exponentially. Let U be a proper subvariety of vard™ (D). Since
U Cvard™ (D7), we get 219, 21,1 € 1d9(U). Hence 1d9""(U) = (1d" (U), 21,0, 211) 15 »
" (U) = 9" (U) and I (U) is polynomially bounded. Hence, vard™(D9") is also an
APG x-supervariety.

]

Lemma 1.4.6. D9 generates an APG x-supervariety.

Proof. First notice that Id9"(A) € Id*(D9") if, and only if, 2], € Id’*(A), for
some r > 1.

In fact, if 2] | € Id"'(A), for some r > 1, then Id"'(A) € 1d*"*(D9"), by Lemma
1.2.4. Suppose now that Id9"(A) ¢ Id**(D9"). Then there exists f € 1d"*(A) such
that f & Id9""(D9"), then we must have f = f(y10,- -+, Yr0s 211, -5 Zn_r1), SiNCE
21,0, Y11 € Idgri(Dgri)'

We may assume f multilinear and so f does not vanish in a basis of D9
Consider @ = (1,1) and b = (1, —1) and notice that {a} and {b} form a basis for
(DI O * and ((D971)M))~, respectively. Since b* = a is a even symmetric element
and f & Id97(D?"%), we have:

0+# fla,...,a,b,....b) = f(b* ...,0%b,...,b) = ab™"",

where o # 0 is equal to the sum of the coefficients of f. Since zil is an even sym-
metric monomial, it follows that f(27,,...,27,, 2z11,...,211) = az{]" € Id""(A)
and since « # 0 it implies that 21" € Id9"/(A).

Let A € var?™(D9") such that var?"*(A) C var?"(D9"). Then for any (\, &, &, i),
if my sz, and m’A’@,@’“ are the multiplicity of Xy gz, in ¥ (A) and X9 (D),
respectively, then my g g, < m) 5, ,. Thus we have, by Lemma 1.3.5,

XA =) miXneie.o.0):
=0

where m; € {0,1}. We have that even symmetric variables and odd skew variables
commute modulo /d9""(D9") and, by the previous remark, we have that z{, €
Id9(A) for some r > 1. This implies that m; = 0 for all j > r. Thus

r—1 r—1
T4 " ! .
Ar(A) £ Xn-iee) = ( ) oo
j=0 0 |

j=
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Hence, ¢9"(A) is polynomially bounded. O

Next, we characterize varieties of polynomial growth which are generated by
finite dimensional x-superalgebras, by excluding from them the x-superalgebras
D,,M,, D9 D9 and M9"". We start with the following lemmas.

Lemma 1.4.7. [9, Lemma 8.4] Let A and B be x-superalgebras. If B has trivial
grading and B & var9"(A), then B & var*(A©®).

Proof. Clearly, 1d9"*(A©) = (Id"(A®),y1 1, 21,1)r; and also 1d"(B) = (Id*(B),
y1.1,211)7;- Hence, if B € var*(A), then B € var®i(A®). Since A is a subal-
gebra of A, var?(A®)) C var?™(A) which says that B € vard™(A). O

Lemma 1.4.8. [9, Lemma 8.5] Let A be a finite dimensional x-superalgebra over
an algebraically closed field of characteristic zero. Let A= A1 @ ---@® A+ J be a
Wedderburn-Malcev decomposition of A, where A1, ..., Ay are simple x-superalgebras.
If for some i,1 € {1,...,k},i # I, we have that AgO)J(l)AZ(O) # {0}, then M9 €
vard"(A).

Proof. Suppose that there exist i,0 € {1,...,k},i # [, such that AZ(-O)J(UAZ(O) # {0}
and let a € AEO),b € Al(o),j’ € JW such that aj’b # 0. If e; and e, are the unit

elements of AZ(-O) and Al(o), respectively, then ejaj'be; # 0 and if we set aj’b = j, we
have ejes # 0 with j € JW.

Let & > 1 be the largest integer such that e;Je, C J* and let A’ = A/JFL,
Since J is a *-graded ideal, A’ is a *-superalgebra and A’ € var?"(A).

Let €1,¢é3,; be the images of e;, ey, j in A, respectively. Since J = J(A') =
J/J¥L we have that €;Jé; # {0}. Let C' = span{éy, €, e1je0, €aj%e1 }. Since e;
and ey are orthogonal idempotents and e, JesJ = exJe;J C J*! we get that C is
a subalgebra of A’. Moreover, C' is a *-superalgebra and (C©)* = span{éy, &},
(COY= = {0}, (CW)* = span{ejjes + eaj*er } and (CV)~ = span{e;jes — eaje; }.
Recalling the multiplication table of M9 we obtain that the map ¢ : C — M9
defined by €; > e114€a4, €3 > €9g+€33, €1]€2 > €12, €2]*€1 > €34 iS an isomorphism
of *-superalgebras. Hence M9 € vard™(C) C vard™(A’) C var?"*(A) and we are
done. O]

In order to prove the following theorem, we will need to introduce one more
concept about the exponent of an algebra.

Let A be a Pl-algebra over a field I’ of characteristic zero. It is well known
that ¢,(A) is exponentially bounded and, in [10], Giambruno and Zaicev proved
that ezp(A) = lim, . {/c,(A) exists and is a non-negative integer called the PI-
exponent of the algebra A. Moreover, ¢,(A) is polynomially bounded if, and only
if, exp(A) < 1.
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The authors also determinate a way to compute the exponent. Let A be a finite
dimensional algebra over an algebraically closed field F' of characteristic zero and
let B be a maximal semisimple subalgebra of A. Then

exp(A) = max dimF(C’fi) 44 C’,gi)),

where Cfi), e ,C’,gi) are distinct simple subalgebras of B and

e g...gc? gt £ {0},

In the following theorem, we characterize the APG x-varieties generated by
finite dimensional *-superalgebras.

Theorem 1.4.9. [9, Theorem 8.6] Let A be a finite dimensional x-superalgebra over
a field of characteristic zero. Then ¢9(A) is polynomially bounded if and only if
M,, D,, D", D9, M9 & var9™(A).

Proof. By Lemma 1.2.7, we may assume that the field F' is algebraically closed.
Suppose that ¢#%(A) is polynomially bounded. Since, by Theorem 1.4.5 and by
Theorem 1.2.6, the *-graded codimensions of M,, D,, D9, D% and M9 grow
exponentially, we get that M,, D,, D" DI M9 & var9"(A).

Conversely, suppose that M., D,, D", D9 M9 & var9"*(A). Let A= B+ J
be a Wedderburn-Malcev decomposition of A, where B is a maximal semisimple
x-superalgebra. Write B = A; & - - - & Ay, where the Als are simple *-superalgebras.
Then

0 0
AO = BO) 4 O — A0 g g 4O 4 JO

is an algebra with involution and with trivial grading. Since, by Lemma 1.4.7,
M,, D, & var?(A®)  we have, by Theorem 1.1.2, that c¢%(A©®) = c7(A®) is
polynomially bounded. Also Ago) = F foralli=1,...,k, and % is the identity map
on B, Since c,(A®) < ¢*(A©®) is polynomially bounded, exp(A®) < 1 and so
AD JO A — (0}, for all il € {1,... k},i #1.

Next, we consider B and we have A; = AEO) @ AZ(-l) ,forall i =1,..., k. Since
Als are simple superalgebras, by Theorem 1.4.2 and by the above, either A; = F
or A; = F + cF with trivial involution or A; = F + c¢F with the involution given
by (a + ¢b)* = a —cb, for i = 1,..., k. If, for some i, A; = F + cF with trivial
involution, then D" € var?"(A), a contradiction. If, for some i, A; & F + cF
with the involution given by (a + ¢b)* = a — cb, then D9 € wvar9™(A), another
contradiction. Thus B has trivial grading and trivial involution.

Now, suppose that there exist i,0 € {1,...,k},7 # [, such that A;JA, =
AV JOAD £ 0} Then, by Lemma 1.4.8, M9 € var?(A), a contradiction.
Therefore, we have that, for all 4,1 € {1,...,k},i # [, A;JA, = {0}. By the proper-
ties of exp(A), we have that ezp(A) < 1 and ¢, (A) is polynomially bounded. Hence,
by Theorem 1.4.3, ¢9*(A) is polynomially bounded and this completes the proof of
the theorem. O
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As an immediate consequence of the above theorem, we have that if A is a finite
dimensional *-superalgebra over a field of characteristic zero, then the sequence
¢ (A), n > 1, is either polynomially bounded or grows exponentially. Moreover, we
classify all the APG %-supervarieties generated by finite dimensional x-superalgebras.

Corollary 1.4.10. /9, Corollary 8.8] var9™(M.,), var9™(D,), varf™(DI"), vard™(DI™)
and vard™ (M97) are the only *-supervarieties of almost polynomial growth generated
by finite dimensional x-superalgebras.

We say that V is a minimal variety of polynomial growth n* if asymptotically
(V) ~ an, for some a # 0, and ¢7"(U) ~ bn', with ¢t < k, for any proper
subvariety U of V.

In the next chapters, we classify all the subvarieties of the APG x-varieties gener-
ated by finite dimensional x-superalgebras, and exhibit the decompositions of the *-
graded cocharacters of all minimal subvarieties of var?™(M.,), var9™(M9"%), var9™(D,),
vard™ (D) and vard™(D9"") and compute their *-graded colengths. We will collect
such results to classify the varieties such that the sequence of x-graded colengths of
them is bounded by three.
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Chapter 2

The APG noncommutative
x-superalgebras

In [21] and [12], the authors considered the algebra M as an algebra with invo-
lution and as an algebra with superinvolution, and classified all subvarieties of the
s-variety var*(M,) and of the variety with superinvolution var®*?(M), respectively.

In this chapter, we clarify the concept of superinvolution, explain why the
classification given by those authors implies the classification of all subvarieties of
the *-supervarieties var?™(M,) and var?™(M9"), and establish the results given in
[21] and [12] in the language of *-superalgebras.

We also compute the x-graded colength of the minimal subvarieties obtained.
Such results about the minimal subvarieties lying in var*(M,) have been recently
submitted for publication in our joint work with La Mattina and Vieira [23], in
x-algebras language. The results of this chapter will be collected in order to classify
the x-superalgebras with *-graded colength bounded by three in the last chapter of
this thesis.

2.1 Subvarieties of the vary"(M,)

Recall that

u r 0 0
0 s 00

M, = 00 s v lu,r,s,v € F
0 0 0 u

with trivial grading and endowed with the reflection involution. Moreover, we have
Id9™ (M) = (21,022,0, Y11, 21,1) 75 -

The purpose of this section is to construct x-superalgebras belonging to the
variety generated by the algebra M,.
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Since M, is a x-superalgebra with trivial grading, we can see the algebra M,
only with the involution algebra structure. Then, we have that the classification of
the x-superalgebras, up to Ty-equivalence, inside var9™(M,) and the classification
of the x-algebras inside the var*(M,) are equivalent.

The classification of all subvarieties inside the x-variety generated by the -
algebra M, was given in [21, Theorem 7| by La Mattina and Martino in 2015. Here,
we restate such results in x-superalgebra language.

In order to describe the subvarieties of var?™(M,), we start by considering, for

any fixed £ > 2, the algebra UTy of 2k x 2k upper triangular matrices over F' and
k—1

E =% eiiy1+ euiognir1 € Uly, where e};s are the usual matrix units. Also we
i=2

consider the subalgebras Ny ., Uy . and Ay . of UTy, introduced in [21].

For k > 2, we denote by Nj . the subalgebra of UTb:
Ny = {Ip,E,...,E" % ey — }
k= Spalpylog, L. . ., y €12 — €2k—1,2k, €13, - - -5 €1k, Ckt1,2k; Ck42,2ks - - - 5 C2k—22k

with trivial grading and endowed with the reflection involution, where I, denotes
the (2k) x (2k) identity matrix. Notice that

0 _
(N;.E )>+ = SPaDF{]%, E,. .., EF 2, €13 + €222k, - - -, €1k + €k+1,2k} and

,k

(0)y—
(Nk,*) = Spanp{em — €2k—1,2k, €13 — €2k—22k, - - -, €1k — €k+1,2k}~

Then we have N . € vard™(M,), since 21922, is a (Za, *)-identity of Ny ..
Similarly, for any £ > 2, we denote by Uy, . the algebra:
k—2
Ui = spanp{log, E, ..., E" ;€19 + €212k €13, - - - , €1k, €ht1,2k, €ht2.2k» - - - » E26—2,2k

with trivial grading and endowed with the reflection involution. Notice that we also
have Uy . € var?™(M,), since

(U,ifl)ﬁ = spanp{lo, E, . .., Ek*Q, €12 + €512k, €13 + €2%—2.2k; - - - » €1k + Chr1.2k ],
(U,E?,f)‘ = SpaDF{€13 — €222k, .-+, Clk — 6k+1,2k}-

a —=b 0 0 a b O

0O a 0O 0 a O

For example, for k = 2,4, we have Ny, = 00 ab |’ U = 00 a

0 0 0 a 0 0O

a b c d 000 O a b c d 0000

O a f g 000 O 0O a f g 0000

00 a f0O0OO0O0 O 0 0a f OO0 OO0

000 a OO0 0 O 00 0a OO0 0O

Nee=1l0000afgn|™Us=100000arfgn

00000 a f 1 00000 a f 1

000 000 a —b 000 0O0O0 a b

000 0O0O0O0 a 000 O0O0O0OU 0 a

QOO
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Remark 2.1.1. [22, Remark 8] Let A be a x-superalgebra. If 21 - - 2,0 is a (Zg, *)-
identity of A, for some m > 1, then

21,0W122,0W2 * * * Wm—12m,0

is a (Zg, *)-identity of A, where wy, ..., w,, are monomials of F'(X|Z,, %) in variables
of homogeneous degree 0.

Proof. Notice that for s € (AO)* &k € (A©)~ we have sk + ks € (A®)~, then
ks = —sk + k', for some k' € (A©)~. If we evaluate the polynomial

21,0W122,0W2 * * * Wm—12m,0

in A©_ after a repeated application of the relation ks = —sk + &/, we can write
the evaluation as a linear combination of monomials each one containing at least m
consecutive skew even elements. Since the product of m skew even elements of A
is zero, we obtain that all evaluation in the polynomial 2z gw; 29 0ws - - - Wy—12m 0 18
also zero. Hence the proof is completed. O

We notice that Us. ~7y; Fis the commutative algebra with trivial grading
and trivial involution. The result about the (Z,,*)-identities and the x-graded
codimensions of Nj , and Uy, follows bellow.

Lemma 2.1.2. For the x-superalgebras Ny, and U, we have

1. [21, Lemma 3] 1d9"(Us,,) = (21,0, Y11, 21,1) 73,

2. [22, Lemma 10] [dgri(Nz,*) = <y1,1,21,1721,022,0, [?Jl,o,yzo], [yl,Oa 21,0]>T2*7
3. " (Uyy) =1 and 9" (Nox) =n+ 1.

Proof. In order to prove the item (1), just notice that (UQ(?*))Jr = spanp{ly, e1o+esq}

and (UQ(O*) )~ = 0, then we get that Us . is T5-equivalent to a commutative algebra
with trivial grading and trivial involution. Hence Id"*(Us.) = (21,0, y1,1, 21,1)1; and

Ii(Uy,) = 1.

Now we study the algebra Ny .. Let I = ([y1,0, y2,0], [¥1,0, 21,0]; 21,022,0, Y1,1, 21,1) 73 -

Since (]\fz(?*))Jr = spanp{/l,} and (]\72(70*))Jr = spanp{e1n —e34} we can easily check that
[ C Id7(Ny.).

Let f be a (Zq,*)-identity of Ns ., we may assume f multilinear of degree n.
Since i1, 21,1, 21,0%2,0 € I, by the previous remark, we can write f modulo I as a
linear combination of the polynomials

Y1,0 " " Yn,0s Yir,0 """ Yin_1,021,05 21 < ... < lp_1.

Now let f be a linear combination of these polynomials. By the multihomo-
geneity of Ty-ideals we may assume f = ayi10 - Yno OF f = BY10° " Yn—1,0%n0-
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By evaluating in y10 = ... = yno = l4, we get a = 0. Also, the evaluation
Y10 =...=Yn—10 = 14 and 2,0 = €12 — e34 gives § = 0.

It shows that these polynomials are linearly independent modulo P9"NId9"( Ny ).
Since P9"'NI C P9"'NId9"*(Ns.), it follows that I = 1d9"*( Ny, ) and the polynomials
above form a basis of PY"*(mod PJ"* N 1d*(N,.)). Hence ¢Z*(Ny,) =1+n. O

Lemma 2.1.3. [21, Lemma 2] Let k > 3. Then
1. 1d9" (Ni) = (Y1, 21,1, 21,0220, (Y105 - - - >yk71,0]>T2*'

k=2
2. I (Ngs) =14 > (?)(2] — 1)+ () (k—1) = gn*t, for some ¢>0.
=1

Proof. Let I = ([y1.0,- -, Yk—10] , 21.022.0, Y1.1, z171>T2*. We can see that I C Id9"( Ny .).

We shall prove the opposite inclusion. Let f € Id9"(N{™) be a multilinear poly-
nomial. Since Nj . is a unitary algebra, we can assume f is a proper polynomial.
After reducing f modulo I, we obtain the following:

(i) If deg f > k, we have f = 0.
(ii) If deg f =k — 1, so f is a linear combination of polynomials

[Zi,anil,()) . 7yik—270]7 for 1 = ]_, e k— 1, 1 <... <ip_o.

(iii) If deg f = s < k — 1, so f is a linear combination of polynomials

(26,0 Yir,05 - - Yis1,0) [Y5,05 Yjr,05 - - Yju—1,0)
whereizl,...,s, 1 <...<1lsq andj>j1 < ... <js—1‘

Hence, modulo I, we can assume that for some 1 < s <k —1

f= Z (21,0, Yir 05 - - - s Yig_1,0) + Z BilYi0: Yi .05+ -+ > Yiu_1,0]-
i=1

=2

Suppose that there exists j such that 3; # 0. By making the evaluation 2o = 0,
forall e =1,...,s, yj0 = e13 + €222k, Yj,, = £, forallm =1,...,s — 1, we get
B; = 0, a contradiction. Then, 5; =0, for all 2 < j <s.

Now, suppose that there exists ¢ such that o; # 0. By evaluating in 2,0 =
€12 — €gk—12k, 210 = 0, for all ¢t # 4, y;,,, = E, forall m =1,...,s —1 we get the
result a; = 0, a contradiction. Then, a; =0, for all 1 < j < s.

The arguments above say that f € I, and so I = Id9"'(N},.). Moreover, we also
have proved that the proper x-graded codimensions are:

0, if s>k

VI (Npw) =4 8, if s=k—1
2s —1, if 0<s<k—1
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k=2
Then we conclude that ¢ (Ny.) =1+ Y (?) (27— 1)+ (") (k—1).
i=1
[

By using similar arguments as in the proof of the Lemma 2.1.3, we can prove
the following results about the (Zo, *)-identities and *-graded codimensions of Uy,
and Ny . ® Uy, for k > 3.

Lemma 2.1.4. [21, Lemma 3] Let k > 3. Then
1. 1d9" (Ug) = (Y11, 211, 21,022,05 [21,0, Y105 - - - 7yk*2,0]>T2*'

. k=2
2. (Up) =14+ 3 ()25 = 1)+ (") (k= 2) = gn*"', for some ¢ >0.
i=1

Notice that if ¢ > k then N, , ® Uy ~13 Nix, on other hand, if t < k we have
Nt,* D Uk’* ~Ty Uk’*. MOI"GOVGI‘, if k =t =2 then NQ,* D UQ’* ~Ty N27*'

Lemma 2.1.5. [21, Lemma 4] If k > 3, then

1. 1d9 (N o®Uks) = (Y11, 21,15 21,022,05 [Y1,00 Y205 - - - > kol [21,0, Y105 - - - Yr—1,0]) 75

k=1
2. I (N @ Ups) =14 > (;‘) (2§ — 1) = qn*=L, for some q>0.
j=1

Now for k > 2, we denote by A . the subalgebra of UTyy:

k—2.
Ay = Spanp{ell + ear ok, E, ..., E" % e, e13,...,C1, €k+1,2ky Ck+2,2ky - - - >€2k:71,2k}>

with trivial grading and endowed with the reflection involution. Notice that

0)\+ _ k—2
(Ak,*) = spanp{en+eog ok, B, ..., E" % e19teok_1.9k, €13+€2k—22k, - - - , €1k+F€x11,2k } and
A(O) - _
( k*) = spanF{em — €2k—1,2k, €13 — €2k—22k, - - -, €1k — ek+1,2k}-

Then we have Ay . € vard™(M.,), since 21922 is a (Zo, *)-identity of Ay ..

For example, for k = 2,4, we have

Ag’* = and A4’* =

o O O e
o o o
o O OO
Q@ o O O

[N oNoNoNoh o s
OO OO Ok
Q.. TTO O OO

OO OO OO OoOR
SO OO oo oo ¢
OO OO OO oo
OO O+ OO OO
OO OO oo

Let St3(y1, 42, Y3) = > _scs, S9M0)Yo(1)Yo(2)Yo(3) denote the standard polynomial
of degree 3. About the x-identities and the x-graded codimensions of the algebras
Ay« we have the following.
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Lemma 2.1.6. For the x-algebra As ., we have

1. [22, Lemma 11]Id"(As.) = (Y11, 21,1, 21,0220, S3(Y1.0, Y2.0, Y3.0)s Y1.021,0Y2.0) Tp*
2. I"(Ay,) =4n — 1, forn > 3.

Proof. Let I = (y11,21,1, 21,0220, St3(Y1,0: 2,0, Y3,0) Yy1,021,0420)7; .  We can easily
check that I C Id*(Ay.). Let us show the opposite inclusion.

First, notice that since z1 9209 € 1d9*(As.), by Remark 2.1.1 we have z; gwza €
Id9( Ay ) for any monomial w of F(X|Zy, %) in variables of homogeneous degree 0.
Then, since y1,1, 211 = 0 on Ay, we must have P (Ay,) = {0}, if ny > 0 or
ny > 0 or ng > 2. Thus by (1.3.1),

C“ZM(AZ*) = Cf:é,o,o(AZ*) + ”Cirjl,o,l,o(AZ*)- (2.1.1)

We start by considering ng”&w (As.). By Poincaré-Birkhoff-Witt theorem, every

monomial in ¥ 0, ..., Yo can be written as a linear combination of products of the
type

Yir 0" Yio oW1+ * Wy, (2.1.2)
where wy, ..., wy, are left normed Lie commutators in the y; s and i; < ... < i,

Since [y1,0, Y2,01[43,0: Ya0], Y1,0[2,0: Y3.0lya0 € I, then modulo [y10,y20][y3,0: ya0l, at
most one commutator can appear in (2.1.2), i.e. elements in (2.1.2) are polynomials

of type

Y1,0° " Yno OF Yir 0" Yis,0lUr0s Yjr,00 - - - » Yjr0] With > j; < ... < ji.

Moreover, modulo y1 o[y2,0, Y3.0]ya0 We have

Y00 Yin 0 - > Yje.0) = [Ur05 Yin0J¥j2.0 * Y50 £ Yini0 = Yje,0[Ur,05 Yin 0)-

Then, modulo 7, every polynomial in Pgﬁop can be written as a linear combination
of elements of the type

(905 Y1,0]42,0 = Ur0 " Yn0s Yir0 " Yin_n0[¥i0, Yj0)  and  yio-Yuoo  (2.1.3)

Notice that elements of the first type only appear in case s = 0 in (2.1.2). Now
since [y1,0, Y2,0]w[ys,0,ya0] € I, where w is a monomial in y;,s, then the variables
out of the commutator in the polynomials of the second type in (2.1.3) can be
ordered. Moreover, since Sts(y1.0, Y20, ¥s0) € I, then y1 o[y2,0, Y3.0] = y2.0[Y1.0, Y3,0] +
Y3.0(Y2.0, Y1,0] can be applied and we obtain that the polynomials

[Yr0, Y10]Y20* Ur0* Yno, Y207 Uro YnolYros Y10l and yio- - Yno, (2.1.4)
generate PY( o modulo Py N 1.
Let f € P,ff&o,o N1d"*(A,.) be a linear combination of the polynomials in (2.1.4)

and write

f=ayio - Yno+ Z Y50, Y1,01Y2,0 U0+ Yno + B0 Yro* Ynol[Yj.0, Y10)-
j=1
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First, by making y;0 = €11 + eqq for all i = 1,...,n, we get a(ey; + eqq) = 0, then
a = 0. Now, for a fixed j, we make the evaluation y;o = ej2+es4 and y; 0 = €11+ €44,
for all 7 # j, and we get ajess — fje1a = 0. Then a; = 5, =0

These arguments prove that P,%ZO oNI = Pff’go 0NId"( A, ) and the polynomials
in (2.1.4) form a basis for P,folo o(A2.). Thus cn707070(A2,*) =142(n—1)=2n—1.

We now consider Pg”lOIO(A2 .). Since y1021.0Y20 € I, then P 1010 can be
generated modulo Pg”1 100 NI by the monomials

2n0Y1,0 **  Yn—1,0 and Y10 Yn—1,02n,0- (2.1.5)

We claim that these polynomials form a basis of Pg”i 100(A24). In fact, let f €
P 510N 1d(As,) be a linear combination of the polynomials in (2.1.5),

f=az0010  Yn—1.0 + BY1,0 " Yn—1,0%n0-

By making the evaluation z,0 = €12 — €34 and y;0 = €11 + e, for all ¢+ # n, we
get —aegy + Pera = 0, and so o = = 0. It follows that Pgmlolo N Id9 (A, *) =

P 01,01 and the affirmation is proved. Thus ¢, 11 100(A2x) = 2.

Hence, by the multihomogeneity of Ty-ideals, Id?"*(Ay.) = I, and according to
(2.1.1) we have @ (As,) =2n—1+42n =4n — 1. O

Remark 2.1.7. Consider k& > 3, I = ([y1,0, Y2,0) 3.0, Ya,0] > [¥1,0, ¥2,0) ¥3,0 - - - Y1 0>T*

and I = ([y1,0, Y2,0) [Y3,0: Y4,0] » Y3,0 - - - Ykt1,0 [Y1,05 Y2, 0]> . In a similar way as the [19
Lemma 3.1] we can prove that

k—2
&) & n .
co00l) = clooo(l2) =1+ ( ) (n—j—1).

Moreover, if [ is the T5-ideal [; N 5 then

I= <[y1,0792,0] [?/3,0,y4,0] yY1,0 - - - Yk—1,0 [yk,m yk+1,o] Yk+2,0- - - ka,0>T2*

From Remark 1.3.1, we have the strict inequality
}% 00(1) < o00(l1) +cio00(l2)

since Y10 - Yn,0 is a polynomial in PY% o which is not in (P sN 1) + (PG o 0N 12).
Furthermore I N PY o, C Id9(Ay,.) N P2, then we have

k-2
770.0.0(Ake) <Cn000(1><cn000([1)+cn000(12)_2+22( ) (n—j—1).

T (2.1.6)

Lemma 2.1.8. Let &k > 2. Then
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1. [21, Lemma 1] Id9 (Ag.) = (Y11, 21.1, 21.022,0, Y1.0 - - - Yk—1.021.0Yk.0 - - - Y2k—2.05
Y1,0 - Yk-2,05t3(Yk—1,0, Yk,05 Yrt1,0) Uk12,0 - - -3/2k—1,0>T2*7

. k—2 k—2
2. [23, Lemma 3.10] ¢/ (Ay.) = 1+23 (N)(n—j)+23 (H)(n—j—1) =
j=0 j=0
qn*=t, for some q > 0.

Proof. The result has already been proved for £ = 2 in Lemma 2.1.6 so we consider
k>3 Let I = (yi1,21,1, 21,0220, Y1,0 - - 'yk72,05t3<yk71,07yk,0>yk{r1,0)yk+2,0 e Y2k—1,0,
Y1,0 - - - Yk—1,021,0Uk0 - - - Y2k—2,0)T5- We can check that [ C [d9"(A.). Let us prove
the opposite inclusion.

Since 210220 € [d9"(Ag), similarly to the proof of Lemma 2.1.6, by Remark
2.1.1, we have zjgwzag € 1d9"(Ag.) for any monomial w of F(X|Zy,«) in vari-
ables of homogeneous degree 0. Then, since y;1,211 = 0 on Ay, we must have
port (Ag«) = {0}, if ng > 0 or ny > 0 or ng > 2. Thus by (1.3.1),

ni,n2,n3,n4

I Ap) = Cgfé,og(Ak,*) + ncyg;g,o,l,o(Ak,*)' (2.1.7)

Let us study the dimensions of PgﬁO’O(Ak,*) and of PﬁiiLOLO(Ak,*).

We start by considering Pgﬁoﬁo(Am). We claim that the following polynomials

inPgﬁo,O
Yoo Yny Yir o YU UmlYis  Yier Upt o Ypu [Yas UbYar - Yau (2.1.8)

where t <k -1, <...<ip,r>m<ji<...<jsandv<k—1,a>b<p <
o < Pu 1 < ... < @y form a basis of PYoo(Ags)-

In fact, let f € ngoi,opﬂfdgri(Ak’*). Since Yi0--- yk—l,O[yk,Oa yk+1,0]yk+2,0 - Y2k0 S
I, then we can write f modulo [ as a linear combination of

/= QY10 Yno E E O 1,JYi1,0 " ° ',%'t,o[yr,(), ym,o]yjl,o Y50
t<k—1 r1,J
or
s<k—1

where t + s =n — 2 and for any fixed t and s, I = {i1,...,%} and J = {j1,...,Js}
Ift<k—1theni; <...<ppandr>m<j; <...<jsandif s < k —1 then
r>m<i; <...<iand j; < ... < Js.

First, suppose that o # 0. Then by making the evaluation y190 = ... = y,0 =
e11 + eapor We get aern + eap 1) = 0 and so a = 0, a contradiction. So aw =0

Now suppose that a,.;; # 0, for some ¢t < k —1,7,1 and J. Then by making
the evaluation y;, 0 = ... = yi,0 = E, yro = €12 + €12t and Ymo = yj;0 = ... =
Yj..0 = €11 + €ap2r We get aur eop—y—12k — O gre124r = 0, thus a1y = ay 51 =0,
a contradiction. Similarly, if a, j; # 0, for some s < kK — 1,7, 1 and J, by making
the evaluation ¥, = yi,0 = ... = Yi,0 = €11 + €22k, Yro = €12 + €2%-12; and
Yo = ... = Yj.0 = E we get a, 17 = o, 57 = 0, a contradiction as before. It
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follows that f € Pgﬁw N I and these polynomials are linearly independent modulo

k=2
Therefore, by counting, we have 1 + 2 ) (?)(n —j — 1) polynomials in (2.1.8)
=0

and since they are linearly independent modulo ng;f,oyo N Id*(Ag,.) we have

n . T
1+ 22 < > (n—j—1)< Ci,o,o,o(Ak,*)-
—\j
J
k—2
On the other hand, by (2.1.6) we get ¢}, 5 o(Ars) <2+2 ) (?)(n —j—1). Thus
=0

k-2
we conclude that ¢ oo o(Ags) =1+2 (?)(n —j—1).
=0

Now we consider P;i’fil,oym(Ak,*). Since Y10+ - - Yr—1.021.0%.0 - - - Yok—2.0 € Td9 (Ay.),
then PJ" ;,, can be generated, modulo Id¥"*(A), by the monomials
Yir,0 " Yir,0%n,0951,0 ** * Yjs,0 (2.1.9)

where 11 < ... <1, 1 <...<jsand we havet <k —1or s <k —1.

Next, we show that these polynomials are linearly independent modulo 1 A9 (Ags).
In fact, let f € Py 10N 1d?*(Ags) be a linear combination of the polynomials
above and write

f= § E Q17Yi1,0 *** Yir,020,0Y51,0 * ** Yjs 0

t<k—1 I,J
or
s<k—1

where t + s = n — 1 and for any fixed ¢ and s, i1 < ... < 4y, J1 < ... < Js

I={iy,....i,} and J = {j1,...,js}-

Suppose ay ;y # 0, for some ¢t < k — 1,1 and J. By making the evaluation, just
like in the proof of [21, Lemma 1|, 2,0 = €12 — €2p—12k; Yiro = --- = Yiro = E
and Y0 = ... = Yj,0 = €11 + €apak, We get —ay o190k + ayre124¢ = 0, thus
ar,; = oy = 0, a contradiction.

Suppose now oy # 0, for some s < kK — 1,1 and J. Then the evaluations

Zn0 = €12 — €2k_12k; Yi1,0 = - = Yiy,0 = €11 T €2k2k and Yji0 = - = Yj.0 = E
give a;; = 0, a contradiction. Thus we have f € I and the polynomials in (2.1.9)

. , k=2
form a basis of P", , ((Ax+). By counting, we get ¢ 51 o(Ars) =2 (";1) So
j=0
T 2 n ;
ncy 1 01,0(Aks) =2 z%) (J) (n—7).
]:

Finally, by the multihomogeneity of Tj-ideals and by (2.1.7), we have [d9*( A .) =

I and
T Apy) =1 +2]§ (Z‘) (n—j—1) +2]§ (?) (n—j).
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]

Remark 2.1.9. Since M, has trivial grading, then any A € wvar9™(M9") also has
trivial grading. By using [21, Theorem 3] we have that if A € var?*(M,) has
polynomial growth, then

A~ (Bi1®© ... @ Bp),

for some finite dimensional x-superalgebras B;,1 < ¢ < m such that dim Jg;) <1,

for all 1 < < m. This means that either B; = J(B;) is nilpotent or B; = F + J(B;).

Next we present the classification of the minimal subvarieties of vard™ (M, ). We
will omitted the proofs because of the similarity to the proof of the equivalent results
for subvarieties of vard™(M9"%) that will be studied in the next section.

Theorem 2.1.10. /21, Theorem 6] Let A be a *-superalgebra such that var9™(A) C
var"(M,). Then A is Ty-equivalent to one of the following *-superalgebras: N,
Nix® N, Ups ®N, A ® N, Npu @ Uis ® N, Ups © Ags ® N, Niu @ Ars ® N,
Ni ® Uy ® Ap s @ N for some k,t > 2, where N is a nilpotent x-superalgebra and
C is a commutative algebra with trivial grading and trivial involution.

Corollary 2.1.11. /21, Corollary 1] A *-superalgebra A € vard™(M,) generates a
minimal variety of polynomial growth if and only if either A ~ry Ny, or A~y Uy,
or A ~rs A, for some k,r > 2 and t > 2.

2.2 Subvarieties of var?(M9"")

In [12], Ioppolo and La Mattina considered the algebra M*“? to be the algebra
M with superinvolution and classify all subvarieties of the variety vars?(M**?),
from a point of view of algebras with superinvolution.

A superinvolution on a superalgebra A = A© @ AM is a map * : A — A such
that (a*)* = a for all a € A and (ab)* = (—1)(4e9 9)deg Op*g* for any homogeneous
elements a,b € A. Here deg ¢ denotes the homogeneous degree of ¢ € A® U AWM,

Notice that if A = A©® @ A®) is a superalgebra such that (A1))2 = 0 then the
superinvolutions on A coincide with the graded involutions on A. In fact, suppose

that * is a superinvolution on A. Given a,b € A, we write a = ag + ay, b = by + by,
where ag, by € A and a1,b; € AWM. So

(ab)* = ((ao + (Il)(bo + bl))* = (aobo + a01)1 + a160 + ay 1)*
0
= bjas + bial + bia; — biay = (b5 + b7)(af + a7)
0
= b*a*.

Then we have that x is a graded involution on A.
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Conversely, suppose that * is a graded involution on A = A©® & A® such that
(A(l))2 = 0. Given ag, by € A© and ai, by € AD we always have

(apbo)™ = bgay, (aghby)™ = biag, (aiby)* = byay, (a1by)* = bja] =0 = —bjaj.
Thus we have that * is a superinvolution on A.

Since M9 = M© @ M® is a superalgebra such that (M™)? = 0, we conclude
that the classification of subvarieties of the superalgebra M with superinvolution
coincides with the classification of subvarieties of var?™(M9"). So the results we

present here are in agreement with the results obtained by Ioppolo and La Mattina
in [12].

The purpose of this section is to construct k-superalgebras belonging to the
variety generated by the algebra M9, Notice that we can see M9 as the al-
gebra M with the reflection involution and the elementary grading induced by
g = (0,1,0,1) € Z3. By Lemma 1.2.6, recall that 1d"(M9") = (210, T11%2,1) 15,
where z; 1 = ;1 or x;1 = 2z;1, for i = 1,2.

For all & > 2 we define NJ™ U™ and AJ" to be the algebras N, Uy and Ay,
respectively, with the elementary grading induced by g = (0,1,...,1,0,...,0,1) €

k-1 k-1
Z% and endowed with the reflection involution.

We start by considering the algebra NJ"*. Since
(NI = spanp{I,E,...,E*?} and

griy (1) _
(Nk )( ) = spanF{eu — €2k—1,2k, €13, - - -, €1k, €k+1,2k) Ek+2,2k - - - ;62k72,2k}7

we can notice that (N, ,f”)(o) is a commutative subalgebra of N, and moreover z; o = 0
in NJ™. We also observe x1 3251 = 0 for z;; = y1 Or Tj1 = Zi1, for i = 1,2 are
(Zy, *)-identities of NJ™. Hence, we have NJ™ € vard™(M9™), for any k > 2.

Similarly, we consider the algebra U. ,f”, for k > 2. We notice that, since
(U7 = span,{I,E,...,E*¥?} and

grin(1l) _
(Uk )( ) = Spaﬂp{eu + €2k—1,2k, €13, - - - 5 €1k, Cka1,2k> Chd2,2ks - - - 7e2k—2,2k}7

we have that 210 = 0 and @122, = 0 for x;; = y;1 or z;1 = 21, for i = 1,2 are
(Zs, *)-identities of U{"™. Then, we also have U™ € vard™(M9™), for any k > 2.

Let us start with the particular case k = 2.

Lemma 2.2.1. For the %-superalgebras N&™ and U{™ we have

1. Id"(NS™) = (210, Y11s 211221) 755

2. Ido (U™ = (21,0, 21,1, Y11Y21)73,

3. I(N§™) = cI(US") = 1+ n.
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Proof. Let us consider the algebra NJ™*, the arguments are the same for UJ™". Let
I = (z10,y1,1, 211%2,1)1; - We can easily see that I C [dg”(Nzg”). We shall verify the
opposite inclusion. Let f € Ido*(N{"") be a multilinear polynomial. Since N§™* is a
unitary algebra, we can assume f a proper polynomial.

If deg f > 2 then f = 0, modulo I. Now if deg f = 1, so modulo I, we get
= az1,;1. By evaluating in z1; = €12 — e34 we get a = 0, then f € I. Hence
I = Id"*(NJ"™). Moreover, we have 7§ (NS"™) = ~{"(N3J") = 1 then 7" (N3J") =
1+n. L

We can see, by the previous lemma, that UJ™ is a commutative algebra with
trivial involution and elementary grading induced by g = (0,1,1,0) € Zi. On the
other hand, NJ"™" is a commutative algebra with non-trivial involution and grading,.

Next we describe the (Zs, *)-identities and *-graded codimensions of N,f” and
U™, for any k > 3.

Lemma 2.2.2. [12, Theorem 4.4] If k > 3, then
1) Id9™(N{"™) = (210, Z11%21, [Y1,1,41,0,- - > Ye—2,0])13, Where 21 = yix or T;1 =
zi1, fori=1,2.

, k=2
2) (N ) =1+ 3 (127 + (") (k= 1) = gn*~", for some ¢ >0.
j=1

Proof. Let I = (210, 11721, [Y1,1,Y1,0, - - - 7Ayk72,0]>T2*7 where ;1 = y;i1 or x;1 = Zi1,
for i = 1,2. It is clear that I C Id9"*(NJ™). We shall prove the opposite inclusion.
Let f € Ido*(N?™) be a multilinear polynomial. Since NY™ is a unitary algebra, we
can assume f a proper multilinear proper. By reducing f modulo I we get:

(i) By Remark 1.2.5, for any polynomial f € F(X|Zy, x), we have x1 1 fro; € I.
Since [211,v1,0] € F (Y1), it means that for any evaluation in [z 1, y1 0] we get an odd
symmetric element, then if deg f > k, we have f = 0.

(i) If deg f =k — 1, so f is a linear combination of polynomials

[Zz',hyil,Oa~~-»yik_2,0]7 fOl" 221,,]{3—1 il,...,ik_g.

(iii) If deg f = s < k — 1, so f is a linear combination of polynomials

[Zi,la Yi 05 - - - 7yis—1,0]7 [yj,h Yj1,00- - - >yjs_1,0]7
where 1 =1,...,5, 11 <...<i,q1and j; <...< Js_1.

Hence module I, we may assume that for some 1 < s < k

f = Z ai[zi,la Yir1,05 - - - ayis—l,O] + Z ﬁ’i[yi,h Yij1,05- - - 7yj571,0]-
i=1 =1

Suppose that there exists ¢ such that a; # 0. By making the evaluation in
yjp=0,forall j=1,...,5 21 = €19 — €ap12%, 25; = 0, for all j # 4, y;,, = F, for
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allm=1,...,s — 1, we get a;(e1,s11 + (—1)%€ax_s2r) = 0, this implies that o; = 0,
a contradiction. Then, a; =0, for all 1 <i < s.

Now, suppose that there exists j such that 3; # 0. By evaluating in z; = 0,
for all t # 7, yj1 = e1s + eap—22k, Yj,, = L, for all m = 1,...,5s — 1 we get the
result Sj(e1sr2 + (—1)* egr_s_10k) = 0, this implies that 8; = 0, and this is a
contradiction. Then, 3; =0, forall 1 < j <s.

Hence, we get I = Id?"(N, ,f”) and we have the proper x-graded codimensions

0, if s>k
grigargriy ) S, i s=k—1
WINED) =90 06 i 1<s<k-1

1, if s=0

, k=2
Then we conclude that & (N?™) =1+ > (?)2]' + () (k= 1).
=1
[

Similarly to the previous lemma we can prove the following results about the
(Zy, *)-identities and *-graded codimensions of U™ and N & U/, for k > 2.

Lemma 2.2.3. [12, Theorem 4.5] If k > 3, then
1) Idg”(U,i’”) = <Zl,07 T11%21, [21,1, Y1,05--- ayk—2,0]>T2*; where Ti1 = Yi1 OT'Ti1 = 21,
fori=1,2.

, k=2
2) Ir(UIM™) =1+ (’;)2]' + () (k= 1) = gn*t, for some g¢>0.
j=1

Notice that if ¢ > k then N/ @ U™ ~y NP on the other hand if ¢ < k so
th'r'l @ UiZT’L NTQ* U]g?”l.

Lemma 2.2.4. [12, Theorem 4.6] If k > 2, then
1) Ido (N @ UJ™) = (210, 211221, [21,1,Y105 - Yk—1,0])13, where z;1 = y;1 or
Ti1 = Zi1, fOTi = 1, 2.

o | hol
2) TN @ U™ = 1+ 231 (%)24 = qn*~', for some ¢ >0.
‘7:

Finally, for k > 2, we consider the algebra A7, We notice that
(Ai”)(o) = spanp{en + eopor B, ..., E¥?}  and

grin (1) __
(Ak )( ) = spanF{em, €13, - - -, €1ky €k+1,2ks CE4+2,2k - - -y €2k—22k) 62k71,2k}7

then we also have that 219 = 0 and 11221 = 0 for z;; = Yi1 OF Ti1 = Zi1, for
i = 1,2 are (Zo, *)-identities of UY™. Hence, for any k > 2, Ay € vard™ (M),

The result about the (Zy, x)-identities and *-graded codimensions of Airi is the
following.
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Lemma 2.2.5. [12, Theorem 5.1] Let k > 2. Then

i (A9TEY _ _
1) 1d7 (A7) = (21,0, T1,1T2,1, Y10 * * * Ye—1,0T1,1Yk,0 * - * Y2k—2,0) 15 Where x; = y; or x; =
zi, fori=1,2.

, k=2
2) cIHATY =1+4Y (’J””) (n — j) =~ qnk=L, for some q> 0.
7=0

Proof. Let R = (210, 211021, Y10 - “Yk—1,021,1Yk,0 " - 'y2k72,0>T2* where z;; = y;1 or
Ti1 = 21, for i = 1,2. We have R C 1d"*(AJ") and we shall verify the opposite
inclusion. Let f € Id9(A?™) , we may assume f a multilinear polynomial of degree
n. By Remark 1.2.5, we have 1, fzy; € R. Then, modulo R, we have that f is a
linear combination of the polynomials

Y10 Un0s Yir 0" Yir 01,1Y51,0 * Y505 Yp1,0 * " Ypu,026,1Y01,0 ** * Yau 05 (2.2.1)

withr+s=u4+v=n—-1,1<Lt<n i1 <...<ip, N1 <...<Js, P1 < ...<Du
and 1 < ... < @p.

So, we write f as a linear combination of the polynomials in (2.2.1)

f= 5y1,0 o Yno t Z Z a1 J1Yi1,0 " Yir 0Y11Y51,0 - Yjs0

r<k—1 1,01
or
s<k—1
+ 2 D BPQuaYpo Ypu0Z1Ya 0 Ygu 05
u<k—1 P,Q,t

v<k—1
where I = {iy,...,0.}, J={j,...,Js}, P={p1,...,pu} and Q = {q, ..., ¢}

First, suppose 0 # 0. By making the evaluation vy, = €11 + eaor and y;; =
21 =0, forall 1 <i,l,t <n, we get §(e11 +ear21) = 0, a contradiction. So we must
have § = 0.

Suppose ay j; # 0, for some fixed r < k —1, I, J,l. By making the evaluation
Zt1 = O, for all 1 S t S n, yj,l = 0, for aHj 7é l, Y1 = €12 + €2k—1,2ks Yir,0 =
e = Yi0 = FE and yjhg = ... = ij’o = €11 + €2k, 2k we get that . J1€2k—r—12k +
ajrieir+2 = 0 implies a7 j; = ay;; = 0, a contradiction. Similarly, if oy j; # 0, for
some fixed s < k —1, I, J,l. By making the evaluation z;; = 0, for all 1 <t < n,
yi1 = 0, for all j # 1, yi1 = €12 + €2—12k, Yir,0 = --- = Yi,,0 = €11 + €252, and
Yo = --. = Yj,0 = E we get a; ;; = 0, a contradiction. Then we must have
ar jgi = O, for all [, J, {.

In a similar way, we may prove that the coefficients Spg: = 0, for all P, @, 1.

Hence, we conclude that I = Id*(A{"") and the polynomials in (2.2.1) are
linearly independent modulo 7d9"*(A7"™). By counting those polynomials, we have

j=0
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Next we shall prove that N7, U’ and AJ" generate minimal varieties of
polynomial growth.

Remark 2.2.6. In [12, Corollary 4.3], Ioppolo and La Mattina proved that if A €
varf" (M) is a *-superalgebra over an algebraically closed field F, then var9™(A) =
var?™(B), for some finite dimensional *-superalgebra B.

As a consequence of this result and of Theorem 1.4.4 we have that if A €

vard™ (M9™) has polynomial growth then A ~gy (By @ ... ® By,), for some finite

dimensional x-superalgebras B;, 1 < ¢ < m such that dim% <1l foralll <i<m.
This means that either B; = J(B;) is nilpotent or B; = F' + J(B;).

Remark 2.2.7. Let A= F + Jy + Jio + Jo1 + J11 be a x-superalgebra. If A satisfies
the ordinary identity [x1,.. .,z for some ¢ > 2, then J1g = Jo; = 0.

Proof. The proof is trivial, just notice that [Jyo, F, ..., F] = Jip and [Jo, F, ..., F] =
t—1 t—1

J01. Hence JlO = J(]l =0and A= (F + JH) D J()(). ]

Theorem 2.2.8. [12, Theorem 4.7 and Theorem 4.8] For all k > 2, NI and U™
generate minimal varieties of polynomial growth.

Proof. We shall prove for NY™ and the proof of the result is similar for U™
We start by considering k = 2. Let A € var9(N§™) such that ¢7"/(A) ~ qn,
for some ¢ > 0. By Remark 2.2.6, we may assume A = B; ® --- & B,, such that

J(BZ’Z) < 1. Since

dimp B; < oo and dimp

e (A) < e"(B) + -+ + (B,

then there exists B; such that ¢7"*(B;) ~ bn, for some b > 0. We have that NJ"
satisfies the ordinary identity [z, 23], then by Remark 2.2.7, we get Jyo(B;) = 0 and
Jo1(B;) = 0. Hence F + J(B;) = (F + Ju(B;)) @ Joo(B;) and, for n large enough,
we have ¢Z"/(F + J(B;)) = ¢§"(F + Ji1(B;)). In order to show that A ~zz N§™, it
is enough to verify that F' + Jy1(B;) ~1; Nf”, so we assume that A is a unitary
algebra.

Since 7 (A) ~ bn, we get @A) = 1 4+ ny/"(A), with 77" (A) # 0. Since
Id9"{(NY™) C Id9(A), we have 79" (A) < 47 (N{™). By Lemma 2.2.1, we conclude
that 79" (A) = 49" (N{™) = 1. Hence ¢7"/(A) = ¢7"/(NJ"™), for all n = 0,1,2,. ...
Then we have A ~q NE™

Now we consider k > 3. Let A € var?*(N?"™) such that ¢7"/(A) ~ gn*~*, for some
q > 0, we shall prove that A ~7; IV, ,f”. By using the same arguments of the first part,
there exists B; such that ¢7%(B;) ~ bn*~1, for some b > 0. Since N{™ satisfies the
ordinary identity [x1,...,zx], by Remark 2.2.7 we get F' + J(B;) = (F' + Jiu(B;)) ®
Joo(B;) and, for n large enough, we have ¢Z*(F + J(B;)) = ¢I"(F + Jy1(B;)). Thus
we may assume that A is a unitary algebra, without loss of generality.
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k=1
Since cf(A) = bn*7!, we get ¢Z{(A) = 3 (1)1 (A) and 7{"(A) # 0 for all

i=0
0<:< k-1, by Lemma 1.3.7.
Now, since Id9"(N?™) C 1d9"(A), we have that lﬂ”fﬁlﬂl#;”(m is isomorphic to a

quotient module of W%Zw%. Then, if ¢5TZ(A) — Z(A})—i MYX () and wi]T‘Z(N]_gM) _

2y M X () are the i-th proper #-graded cocharacters of A and N, 9T respectively,
Wemusthavem<><m yforall (A) Fiand 0 <i<k-—1.

For (\) = (9,9,2,2) 0, (\) = (2,(1),9,2) F land (\) = (2,2,2,(1)) - 1,
we have m ) = m’o\> = 1. Now for each i =2,...,k — 2, let f1 = [21.1,Y1.0,-- - Y10

i—1
and fo = [y11,%1,0,---,Y1,0] be the highest weight vectors corresponding to the par-
—_——

i—1

titions (A\) = ((1 —1),2,2, (1)) an ( )y =((i—1),(1),9,9), respectively. We have
fi, fo & Idu"”(Ng”) for all i=1,...,k—2. Moreover, we have that [21 1,410, ..., Y10
k—2

is a highest weight vector corresponding to (A) = ((k — 2), 3, @, (1)) which is not a
w-graded identity of NJ™.

Then, for all « = 1,...,k — 2 we have that x(i-1),2,2,1), X(i-1),1),2,0) and
X((k—2),2,2,(1)) appear in the decomposition of the i-th proper *-graded cocharacters
of NJ™ with non-zero multiplicities. Since

g’!’Z

YWL(NE) =k — 1 = deg X((b-2)0,0,1) and

V(NI = 2i = deg X((i-1),2,2,(1)) T deg X((i-1),(1),2,2)

for all 1 < ¢ < k — 2, we obtain 1/15”(]\[,?”) = X((i-1),2,2,(1)) + X((i-1),(1),2,2), for all
1<i<k-—2,and @/)gm (N,g”) = X((k-2),2,2,(1))-

Hence, since 7{" (4) # 0, we also get ¢{" (A) = X((x_2).0.0,1). Moreover,
forall 1 << /§— 2, we must have wigm( ) = X((i-1),2,2,(1)) T X((i-1),(1),2,2)- 1N
fact, suppose 97" (A) = Xx(i-1),1),2,2), for some 1 < ¢ < k — 2, this implies that
(21,1, Y10, - - > Y10] € 1d7(A) and s0 [z1,1, Y10, - - y10) € L (A), thus 7" (A) =0,

—1 k—1
a contradiction. Similarly, if ¢ (A) = X((i-1),2,2,(1)) for some 1 < i < k — 2, then
[Y1.1,Y1.05 - - - > Y1.0] € Td(A). Now, notice that [211,y10] € F(Y1), so we also have
—1
(211,910, - - y10] € Td7(A) and 4™ (A) = 0, a contradiction.
—_—

k—1

Thus we must have 19" (A) = X((i=1),2,2,(1)) + X((i=1),(1),2,2), for all 1 <@ < k—2,
and wg” (A) = X((k-2),2,0,1))- Hence, for all n > 1 we get

i A kzi( ) gm 1+Z< >2j+< ﬁJ(k—l):CgLTi(ngn),

=0



CHAPTER 2. THE APG NONCOMMUTATIVE %-SUPERALGEBRAS 42

and, since Id9"(N{™) C Id9(A), we conclude that Ido"*(NJ™) = Ido"*(A).

Next we prove that Airi generates a minimal variety of polynomial growth.

Remark 2.29. Let A=F+J € varg”(AZTi) with J = Joo @ Jio @ Jo1 @ Ji1. Then
JW = 0.

P?”OOf. In faCt, since Y1,0° " Yk—1,0 T1,1 Y0 " Y2k—2,0 € [dgm(Ai”), where T11 = Y11
or xj; = 21,1, we notice that

F. . FUNYVF. . F=U")"=0 and F...FJY)Y F.. . F=JP) =o0.

k—1 k—1 k—1 k—1

Hence Jﬁ) =0. [

Theorem 2.2.10. [12, Theorem 5.2] For allk > 2, Airi generates a minimal variety
of polynomial growth.

Proof. Let A = F + J be a -superalgebra with Jig # 0 (hence Jo; # 0) such that
A € vart™(A]") with ¢"(A) ~ qn*~!, for some g > 0. We claim that A ~g; A7

By the previous remark, we have A = F 4 Jo @ Jig ® Jo1 & J11 with Jﬁ) = 0.
Suppose that Jio((J$0)F)E=2 = 0, it also says that ((JO))F 20y = 0. We claim
that if J™ = 0 then for all n > m, the polynomials

fi= Yir 0" Yi, 0910 ° " Yk—2,0 Y1,1 Yk,0 " Y2k—4,0Y51,0 * * " Yj,,0,

fo= Yi 0" Yip,0Y1,0 °° " Yk—2,0 21,1 Yk,0 """ Y2k—4,0Y51,0 * * " Yj;,05

with ¢ + 1+ 2k — 3 = n are (Z, *)-identities of A.

In fact, since f; and fo are multilinear polynomials, it is enough to evaluate
the variables on a basis of A which is the union of a basis of Jyg, Jig, Jo1, J11 and
1p. Since J™ = 0, if we evaluate all variables in J, we get f; = 0,7 = 1,2. So,
at least one variable must be evaluated in 1p. Now, since (Jﬁ))Jr = (JS))_ =0,
we need to evaluate the variables y;, and 2z;; in Jio + Jo;. We can see that, since
Jlo((Jég))ﬂk*Q =0 and ((Jég))Jr)k*QJm =0, we get f; =0,i = 1,2, for all evaluation
in A. Thus, f1, fs € [dg”(A)

Let I C I dg”(Aiqfi) be the Ty-ideal generated by fi, f> plus the generators of
the Ty-ideal Id9"*(AJ™). For any n > m, the following set of polynomials

{yl,o o ‘yn,o} U {yil,O Y 0U11Y51,0 0 Ye,00 Vi 000 Vi 021,1Y5,,0 00 'yjs,O}
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where r <k —-2ors<k—2, 11 <...<1t, 1 <...<jsand 1 <[ < n, generate
P9 (mod P9 N Id9™(I)). Thus

k-3
A"(A) <1 +4Z (n) (n— j) ~ bnF=2

for some b > 0, a contradiction.

Hence, we must have Jio((J30)T)"2 £ 0 and also ((JO)*)¥2J # 0. Let
a € Jiw, bi,...,bp_o € (J)T be such that ab;---b,_o # 0, then we also have
bi_, - biat # 0 with a* € Joy, 0F, ..., bt € (J9)*.

Let f € Id”*(A) be a multilinear polynomial of degree n. By Lemma 2.2.5, we
can write f, modulo Id9"*(AJ"™), like:

F=0mo Yo+ Do D ars¥iuo-- “Yir0Y1,1Y51,0 * * * Yjs,0

r<ke1 1,01
or
s<k—1
+ 2 D BPQaYpo Ypu0Zt1Ya 0" Yau 05
u<k—1 P,Q,t

v<k—1
where I = {iy,...,0.}, J={Jj1,---,Js}, P={p1,...,pu} and Q = {q1, ..., ¢}

By evaluating y;0 = €11 + eapor and y;1 = 2,1 = 0, for all 1 <,[,¢ < n, we get
d(e11 + ear2r) = 0. So, we must have § = 0.

Fixed s < k — 1, I, J,l. By making the evaluation z,; = 0, for 1 < ¢ < n,
yj1 =0, forall j #1, yi1 = a+a*, yj,0 = by, for 1 < p < sand y;, 0 = 1, for
1 <m <r, weget ar jaby---bs + ayriby---bsa* = 0. Since ab; ---bs € Jip and
by ---bsa* € Jy; are non-zero and linearly independent, this implies oy ;; = a1 =
0. Similarly, fixed r < k£ — 1, I,J,l. By making the evaluation z,; = 0, for all
1 <t<n,y =0 forall j #1, y1 = a+a", yj,0=1p, for 1 < p < s and
Yipm,0 = Uppq, for 0 <m <r—1, we get ay jiby - -bja* + oy aby--- b7 = 0. Again,
since abj - - - b} € Jip and D} - - - bja™ € Jp; are non-zero and linearly independent, this
also implies a7 j; = 0. Then we must have a; ;; =0, for all I, J,[.

Now fixed v < k — 1, P,Q,t. By making the evaluation z;; = 0, for all j # ¢,
21 = a—a*, Ygo = b, for 1 <1 <wandy, o= 1p, for 1 < m < u, we get
Bpoaby - by, + Bpg by - - - bya® = 0, then it implies Spg: = Bpo+ = 0. Similarly,
fixed v < k-1, I,J,l. By making the evaluation z,; = 0, for all 7 # ¢, z,; =
a—a*, Ygo=1lp, for 1 <1 <wandy,, ,.o=0b,, for 0 <m < u—1, we get
Bpq.ibl - - bja* + Bpgabl - - by = 0, then it implies Spg, = Bpos = 0. Then we
must have Bpg, = 0, for all P,Q,t.

Thus, we conclude that I = Id9"*(A?") and, hence, 1d9"(A) = Id9"(AJ™).

Now, we consider A € var? (A" such that ¢7*(A) ~ gn*~!, for some ¢ > 0, in
general case. By Remark 2.2.6 we may assume A = B1®---® B,,,, where By, ..., B,

B; .
are finite dimensional *-superalgebras such that dimg m < 1. since

I(A) < I(By) 4 -+ 2 (Bn),
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then there exists B; such that ¢ (B;) ~ bn*~!, for some b > 0, with B; = F+J(B;).
Hence, since B; € vard™(AJ") we get B; ~py A}, according to the result of the
first part of the proof.

Thus, we have
vard" (ALY = vard™(B;) C var?™(A) C vard (AJ™").

Hence, we conclude that A ~q AT O

The next result presents the classification up to 75-equivalence of all unitary
x-superalgebras that generate a proper subvariety of vard™(M9I™).

Lemma 2.2.11. Let A € varM9" be a unitary x-superalgebra that generates a
proper subvariety of vard™ (M9™). Then either A ~ry C or A ~ry N,f” or A ~ry
U™ or A ~py NI @ UY™, for some k < 2, where C is a commutative algebra with
trivial grading and trivial involution.

Proof. By Corollary 1.4.10, M9 has almost polynomial growth, then if A generates
a proper subvariety of var?™(M9™) so we have, for some k > 1,

k-1

) =3 (D)) mant

1=

If k=1, then I'y C Id"*(A). Thus we have z;0 = y11 = 211 = 0 in A. Hence A ~1y
C, where C' is a commutative algebra with trivial grading and trivial involution.

If we assume k = 2, then we have 7§"*(A) = 0 and so T'J"* C Id9"*(A). Since
A € vardm (M9, we have 219 = 0 in A. So we have three cases to consider:

(1) y11 € Id""(A) and 211 ¢ 1d""(A). Then Id9"{(NY™) C Id9"(A), by Lemma
2.2.1. Since N generates a minimal variety and ¢§"*(A) ~ an, by Theorem 2.2.8,
thus we have A~y NJ™.

(i) 11 ¢ Id*(A) and 21 € Id7"(A). We get 1d9/(US™) C Id9"i(A), by
Lemma 2.2.1. Since U™ generates a minimal variety and ¢ (A) ~ an, by Theorem
2.2.8, thus we have A ~qy UJ™.

(iii) 1.1, 211 & 1d9"(A). Since 7 (A) ~ an and " C Id"*(A), in particular
[Y11,Y10] and [z11,Y10] are (Zq,*)-identities of A. Then, by Lemma 2.2.4, we get
I (N™ @ UY™) C 1d97(A). Tt is clear that 4" (A) = 2 and so 7" (A) = 1+ 2n =
cI(N§™ @ US™), for all n > 0. Hence A ~gs N§™ & US™.

Suppose now k > 3. Since 7,32"1(14) # 0, at least one of the polynomials
[yl,h 3/1,07 e ;yka,O] and [21’1, yLO’ .. 7yk72,0] 1s not a (ZQ, *)—1dent1ty Of A

FirSt{ 1f [yl,lv y1,07 ce Jyk—Q,O] S Idgm(A) and [21,17 ?/1,07 s 7yk—2,0] ¢ Idg'ri(A>7
then Id9"*(N]™) C Id?"*(A), by Lemma 2.2.2. Since N/ generates a minimal
variety, by Lemma 2.2.8 and ¢7"/(A) ~ an®~!, thus we have A ~p; N7
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Now, if [y1,1,910, -+ Yk—20] & 1d7"(A) and [z11, 910, .-, Yk-20] € [d7(A),
then it implies that 1d9"*(U}"") C 1d?"*(A), by Lemma 2.2.3. Since U™ generates a
minimal variety, by Lemma 2.2.8 and ¢"(A) ~ an*~!, then we conclude A ~g; U™

Finally, suppose [y1,1,%10,---,Yk-20); [21.1, Y10, - - - Yr—2,0] ¢ Id’"*(A). Since

gri

7" (A) = 0, then all proper polynomial of degree k lies in Id?"/(A), in particu-
lar [yl,h yl’o, Cen 7}yk_1’0}, [,'2171, Y1,0y--- ;yk—l,O] c ]dg”<A). By Lemma 2247 we get
Id9"(N{™" @ UJ™) C 1d9"(A). Let us prove the opposite inclusion.

For each i = 17 ceey k— 17 let fl = [Zl,layl,(]a s 7y1,0] and f2 = [y1,17y1,07 s 7y1,0]

—1 i—1
be the highest weight vectors corresponding to the partitions (\), = ((i—1), @, 3, (1))
and (\), = (1 — 1),9,(1),9), respectively. Since fi, fo ¢ Ido"(N{" & UJ™),
we have that x(), and x(, effectively appear in the decomposition of the i-th

proper *-graded cocharacters of IV, 97 @ U with non-zero multiplicities. Now, since
V(NI @ UY™) = 20 = deg x(ny, +deg x(n,, we have forall i =1,...,k — 1

VI (NE @ U™ = X(i-1)0.0,0)) + X((i-1).2,(1),2)-
IE ™ (A) = 32 s moy Xy and ¢ (NI @ UE™) = 37, miy, X are respec-

tively the i-th proper *-graded cocharacters of A and N @ U™, so we must have
forall (\) Fiand 0 <i<k—1,mpy < m’w. Moreover, we must have

¥{"(A) = X(i-n.2.2,0) T X(i-1).0.0.0),

foralli =1,...,k—1, since [y1.1,Y1.0s---,Yk—20] and [211,Y10,---,Yk—20] are not
(Z3, x)-identities of A. Then, for all n > 0, we get

k-1 k—1
I(A) = Z (7;) 7{9”(‘4) =14+ Z <?) 2j = Cgri(Nigri @ Ulgri).
1= j=1
Hence 1d7 (N{™ @ U"™) = Ido(A) and so A ~pz NI @ UZ™. -

The classification of all proper subvarieties of the variety generated by M9 is
given by the following.

Theorem 2.2.12. [12, Theorem 5.3] Let A be a x-superalgebra such that var?™(A) C
vard" (MI™).  Then A is Ty-equivalent to one of the following *-superalgebras:
N, CON, NN"® N, U@ N, A" N, U o N"® N, U & A" @ N,
N @ A" @ N, U™ @ NY" @ A @ N for some k,t > 2, where N is a nilpo-
tent x-superalgebra and C' is a commutative algebra with trivial grading and trivial
inwvolution.

Corollary 2.2.13. A x-superalgebra A € vard™(M9%) generates a minimal variety
gri

of polynomial growth if and only if either A ~r; NI or A ~y U or A ~ry AL,
for some k > 2.
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2.3 The *-graded cocharacter of the minimal sub-
varieties

In this section, we explicit the sequences of x-graded cocharacters and of *-
graded colengths of the minimal varieties var?™(A) C var?"(M,) and vard™(A) C
vard" (MI™).

The results about the minimal subvarieties lying in var9™(M,) are in a joint work
with La Mattina and Vieira [23] which was recently submitted for publication in the
language of x-varieties. Here we restate such results in *-superalgebra language.

We prove all theorems by using induction on k, so for each class of algebras
Ni.«, Up» and Ay, . we start with a lemma about the sequence of the *-graded cochar-
acters in a particular case.

We start by the study of x-cocharacters and of *-colengths of the minimal
varieties vard™(Ay.), for k > 2.

Lemma 2.3.1. For the x-superalgebra As ., we have

1. X%M(Az,*) = X(n),2,2,0 T 2X(n—1,1),@,z,@ + 2X(n—1),®,(1),z7
2. ZZ”‘(AQ,*) = 5.

Proof. By Lemma 2.1.6, it is known that ¢9(Ay.) = 4n — 1 and notice that
d(n),@,@,@ + 2d(n—1),®,(1),® + 2d(n—1,1),®,®,® =14+2n+ 2(” - 1) = C%ri(Az,*)-

Then, since m(,) g, = 1, if we find two linearly independent highest weight vectors
for each pair of partitions ((n —1),9, (1), ) and ((n—1,1), &, &, &) which are not
identities of Aj ., we may conclude that x%"(A, ) has the wished decomposition.

In fact, let us consider the following highest weight vectors associated to the
multipartition ((n — 1), &, (1), @) and their corresponding multitableaux:

( l 1 [ 2 [ [ n—2 [ n—1 l ) g ) ) < ) andfl :yfalzl,o (231)
(I3[ In-1[n], o, [1], 2 )and fo = 21047 - (2.3.2)

It is clear that, by making the evaluation y; 9 = e1; + eqq and z19 = €12 — eaq,
we get fi = e9 # 0 and fo = —e3y # 0. This implies that f; and f; are not

(Zy, *)-identities of Ay .. Moreover by making the same evaluation we have that
afi + Bfy = 0 implies @« = 8 = 0, so these polynomials are linearly independent
modulo Id9"(Aj.).

On the other hand, consider the following highest weight vectors associated to
the multipartition ((n — 1), &, (1), @) and their corresponding multitableaux:

( ; & [ [ = l y @, 9, 9 > and g1 = [y1,07y2,0]y?62 (233)
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( n_1]1[ - [n-2] ., 2,9, 0 > andg2=yf62[y1,o,y2,o]‘ (2.3.4)

n

By making the evaluation y;0 = €11 + eqs and yo o = €12 + €34, we get g =
—e3q # 0 and go = e1p # 0. This shows that g; and gy are not (Zs, *)-identities
of Ay, and by making the same evaluation we have that ag, + Sg2 = 0 implies
a = 8 =0, so these polynomials are linearly independent modulo 1d9"*(As ).

Thus, we finally have x9"(As+) = X(n),2,0,6 + 2X(n—1),,(1),5 + 2X(n-1,1),0,0,2 and
197(Ay.,) = 5.

O

Before giving the decomposition of x¥*(Ay.), for any k > 2, we prove the
following.
Remark 2.3.2. Let kK > 2. Then

, k-1 ' k2 .
A Ars) = dmyoos t+ 2. 2k —i)dn—jpeee+ 2 20k —j—1)dnmj1j1).00e
=1 =1

J J=
k—2

+ ZO 2k —j = Ddm—j-15).2.0).2
]:

Proof. We will use induction on k. By Lemma 2.3.1, we have
X?LM(AZ*) = X(n),2,0,0 T 2X(n-1,1),2,0.6 T 2X(n—1),2,(1),5
this implies that the result is true for k = 2.

Now we suppose the result is true for some k£ > 2. By Lemma 2.1.8, we have
the following

C%M(14k+lﬁ>

I (Aps) +2(," ) (n—k)+2(")(n—k+1)

. k k—1 k—1
= C‘?LT‘Z (Aky*) + 2 Z d(n—j,j),@,@,@ + 2 d(n_j_17j71)7®7®’® + 2 Z d(n_]_l’])’®7(l)7®
Jj=1 J=1 J=0

k k-1
= d(n)vgzgug + Z 2(k + 1 - j)d(n_jvj)agvgvg + Z 2<k - j)d(n_j_lvjvl)vgvgvg
j=1 j=1

k—1
+ ZO z(k - ])d(n_3_133)7®7(1)7®
]:

ok k—1 k—1
by using > dn—jj)o.00F > dn-j-1,j1).0.00 = (kfl)(n—k) and Y din—j-1,)0,1),0 =

j=1 j=1 j=0
(,",)(n —k+1). Thus, the result is true for any k > 2. O
We will adopt the convention where the symbols =, ~ and ~ indicate alternation

on a given set of variables in the next lemmas. Thus, for instance, the notation
N Y1Y1YaY222y3 indicates the polynomial

Z (signp) (signo ) (SIgnT)Yp(1) Yo (1)Yr (1) YaYo (2) Yp(2) Yr(2) Yo (3) -

o€S3
p,TESY
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Theorem 2.3.3. For k > 2, we have

A k—1 . k=2 )
1. X?LM<Ak,*) = X(”)’Q’@’®+Z:1 (k_]>X(n—j,j),®,®,®+ 231 (k_]_1>X(n—j—1,j,1),®,®,®
j= =
k—2 )
+ Z Q(k - -] - 1)X(n7.j717j)7®7(1)»®7
7=0

2. 197(A,) = 3k2 — 5k + 3.

Proof. By the previous remark, we have, for any k > 2,

k—1 k—2

(Ars) = dmyeoe+ 2 2k = fdu-jieee+ 2 20k —j — Ddu-j-151000
1 i—1
k—2 ]. ’
+§%%k—3—1ﬂmﬁ4w@mmw
]:

It is clear that m(,) 5,0, = 1. In order to prove the wished decomposition for
XI"( Ay« ), we shall prove that the irreducible characters X(n—j,j),2,2,2> X(n—1—1,,1),2,2,8
and X(n—it—1,0),2,1),0, for 1 <j<k—-1,1<[I<k—-2and 0 <t <k~ 2, appear
in the decomposition of the cocharacter x9*(Ay,.) with multiplicity mg,—; ) 0,00 =
2(k —7), Mu—i—111),0.0,0 = 2(k —1—1) and mp—t—1,4)0,1),0 = 2(k —t — 1), respec-
tively.

(¢) For the multipartition ((n—1,1), @, @, @), for any 0 < p < k — 2 we consider
the following pairs of multitableaux:

( ii; 1[~~-[p[p+3["'["l’@’@’g>
( Ty o Tnp—2[npil [ n] , @>

and their corresponding highest weight vectors, respectively,

n—p—2 n—p—2
fr= y]f,o[yl,o, y2,0]y1,0p and g, = yl,op (Y10, yz,o]yfo-
By making the evaluation y; g = €11 + e 2r + £ and y2 0 = €12 + €25—1,2, We get

fp(yLOa yz,o) = €2k—p—2,2k — €2k—p—1,2k and gp(yl,Oa yz,o) = €1p+2 — €1,p+3-

Then, f, and g, are not (Z,, *)-identities of Ay, for any 0 < p < k — 2, and
these 2(k — 1) polynomials are linearly independent modulo Id9"*(Aj.). Hence
Mn-1,1),0,0,0 = 2<k - 1)~

(17) Fixed 2 < j < k — 1, for the multipartition ((n — j,7),d,,d) and for
0<p<k—-—j5—1and w=n—p, we consider the following pairs of multitableaux:
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p+1 p+2 o p+J L Jplpt2+1[--[n]
pti+1l | p+i+2 [ [ p+2 o
w=2+1 [ w=2j+2 [ [ w—j L[ Jw=2Jwtl][ - [n] o
w—j+1 w—j+2 |- w .
(2.3.5)

and their corresponding highest weight vectors, respectively,

_ ,n=2j—p - ~ = ~ p
and g, = Y10 Yro - Y1,0Y2,0 Y20 Y10

)

— P - ~ - ~ n—2j
Jo =Y0Y10 Y10 Y20" " Y2,0 Y1,0
NN N J/

)

—-bp

~~ ~~ N~ N~

J J J J

By making the evaluation y; o = e11 + eapor + £ and Y20 = €11 + g2k + €12 +
eak—1,2k, We have f,(y1.0,Y2,0) = a€ok_p—jor and g,(y1.0, Y2,0) = Be1 j4pt+1, with a # 0
and 8 # 0. Then , for any 0 < p < k —j— 1, f, and g, are not (Z,, *)-identities
of Ay .. Moreover, the same evaluation shows that these 2(k — j) polynomials are
linearly independent modulo 1d"(Ay.). Thus mu—jjeee > 2(k — j), for any
2<j<k-1.

(17i) Now, fixed 1 <[ < k—2, for the multipartition (n—10—1,1,1), &, &, &) and
for 0 < p < k—j—2and w = n—p, we consider the following pairs of multitableaux:

p+1 p+1 e p+1—1 L] [p[p+2+2] - [n]
p+1l+4+1 p+1+3 p+20+1 , 9, 0,0
p+l+2
w—1—1 w— 21 Jw—T—-2J1] - Jw—2-1Jw+1]---[n]
w—1 w—14+2 w , @, 9,0
w—1+1
(2.3.6)
and their corresponding highest weight vectors, respectively,
_p _ = ~ o~ o~ — = n—p—20—1 d
fr= Y1,0Y1,0 " - Y1,0 Y1,042,043,0 Y2,0 * " Y2,0 Y1 0 an
——— N———
-1 -1
_ n—p—20-1_ _ = o~ o~ o~ — = . P
9 = Y10 Y1,0 " Y1,0 Y1,092,0Y3,0 Y2,0 -~ Y2,0 Y1 0-
~——— —_——
-1 -1

Evaluating 410 = e + earor + E, o0 = £ and yzo = €12 + eop—1,2k, We get
To(Y1.0, ¥2,0,Y30) = €op_1—p_12k and g,(Y1.0, ¥2,0,¥3,0) = Beri4pra, With a # 0 and
B # 0. Thus f, and g, for any 0 < p < k — j — 2, are not (Z,, *)-identities of
Ay« and these 2(k — [ — 1) polynomials are linearly independent modulo Id9"( Ay ..).
Hence we have m,—i—11)0,0,06 > 2(k —1—1), forany 1 <1 <k — 2.

(iv) Finally, fixed 0 < ¢t < k — 2, for the multipartition ((n —t — 1,t), &, (1), @)
and for 0 < p < k—7—2 and w = n — p, we consider the following pairs of
multitableaux:

p+1 p+t 1[~~-[p[p+2t+2[~-~[n]
(L . o [pEIET], o
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w—t+1 | --- w

( p— w—1t—1 1 [ ...[w72t71[w+1 [ [nl’ g7 w—t s @) (237)

and their corresponding highest weight vectors, respectively,

D — = — = n—p—2t—1 d
Jr= Y10Y1,0 " Y1,021,0¥Y2,0 " Y2,0 Y10 al
A ~~ A ~~
t

t

n—p—2t—1 — = — =
9p = Y10 Y1,0° " Y1,021,0Y20° " Y20Y
N o N o

t t

70.

By making the evaluation y; o = €11 + ear 2k + £ and 21 g = €12 — €21 2, in case
t =0, and y10 = e11 +eopor + E, y20 = E and 219 = €12 — eg_1,21 otherwise, we get
fp(y1,0,y2,072’1,0) = Q€2k—t—p—1,2k and gp(?h,o,yzo, 21,0) = 561,t+p+1, with o # 0 and
B # 0. Thus mpm—t—14),0,0),e > 2(k —t —1), for any 0 <t < k — 2, since f, and g,
are not (Zs, x)-identities of Ay ,, for all 0 < p < k —t — 2, and these 2(k —t — 1)
polynomials are linearly independent modulo 7d9™*( Ay, ).

Hence, x9"(Ay..) has the wished decomposition. It is easy to show that 19" (A ) =
3k? — 5k + 3,Vk > 2, and the result is proved. O
Now, we study the *-graded cocharacters and the x-graded colengths of the

minimal varieties vard™(Ny.,) and var?(U,,), for all k > 2 and ¢ > 3.

Lemma 2.3.4. For the x-superalgebra N ., we have

1. XZM<N2,*) = X(n),2,0,2 T X(n—1),2,(1),2
2. 197 (N,) = 2.

Proof. By Lemma 2.1.2 it is known that ¢2"*(N,,) = 1+ n and notice that we have
dn)o.0.0 + din-1),0,01)0 = 1L +1 = I (Na.).

Then, since mn)z,0,z = 1, if we find a highest weight vector for the multipartition
((n —1),9,(1),) which is not a (Zg, *)-identity of Ns,, we may conclude that

9i( Ny ) has the wished decomposition.

In fact, let f; = yﬁalzm be the highest weight vector associated to the multi-
partition ((n — 1), 9, (1), @) corresponding to the multitableaux:

(l1[2['”[n72[n*117®77®)' (238)

It is clear that, by making the evaluation y,0 = I and 219 = e — €34, We get
f(y10,210) = €12 — €34 # 0. This implies that f is not a (Zg, *)-identity of N .
Hence, we have x9*(Na.) = X(n),2,,2 + X(n-1),2,(1),2 and 19" (Ny,) = 2.

]

Lemma 2.3.5. For the x-superalgebra Us ., we have
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1. X%M(U&*) = X(n),2,2,2 T X(n-1,1),0,0,0 T X(n-21,1),0,0,0 T X(n—-1),2,(1),2>
2. lfLM(U&*) = 4.

Proof. By Lemma 2.1.4 it is known that ¢Z*(Us,) = 1+ n + z and notice

that we have

(n—-1)
2

(n—1)(n—2)

A Usy) = 1+n+(n—1)+

= dw),o,0,0 + dn-1)2,0),0 T dn-21)0,0c + d(n—1,12),@,®,@-

Then, since m,) g,z = 1, if we find a highest weight vector for each multipartition
(n—1),2,(1),2), (n—1,1),2,9,d) and ((n—2,1?),d, &, &) which is not (Zy, *)-
identity of Us ., we may conclude that x9"*(Us ) has the wished decomposition.

In fact, let f = yfglzl,o be the highest weight vector associated to the multipar-
tition ((n — 1), &, (1), ) and corresponding to the multitableaux:

(l1[2["'[n_ll7®77®>‘ (239)

It is clear that, by making the evaluation y; o = I and 2,9 = e13 — ess, We get
f(y10,210) = €13 — eq6 # 0, then f is not a (Zs, x)-identity of Us .

Now, we consider g = [y 0, yQ,O]yﬁaZ the highest weight vector associated to the
multipartition ((n — 1,1), &, &, &) and corresponding to the multitableaux:

2

(131...17117@’@,@). (2.3.10)

By making the evaluation y; g = I +e1a+e56 and ya 0 = eaz+e45, we get g(y1.0, Y20) =
e13 — eg6 7 0. Then g is not a (Zs, *)-identity of Us...

Finally, we consider h = St3(y1.0, Y2.0, yg,o)y’ﬁf the highest weight vector asso-
ciated to the multipartition ((n — 2,1?%), @, @, @) and corresponding to the multi-

tableaux:
1[4 [n]|
12| , B, @9, 2 |. (2.3.11)

3

By making the evaluation, y19 = I, ¥20 = €23 + €45 and y3 o = €12 + €55, we get
h(y1,0, Y20, Ys,0) = —e13 + €46 # 0 and it shows that h is not a (Zs, *)-identity of Us .

Then, we finally have X (Usw) = Xmyoee + X-1)0,0)8 + X(n-1.1),0,0,6 +
X(n—2,12),2,2,% and Z%M(U;;) =4. O

Next we make the following observation:
Remark 2.3.6. Let kK > 2. Then

. kig .
A New) = dmyooe+ 2 (k=75 —2)[dwn—jj 000+ dnj-11)000
=1
k—2 .]
+ Zo(k —J = Ddm—j-14).2,0).0-
=
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Proof. We will use induction on k. By Lemma 2.3.4, we have
XT (Now) = X(n),0,0,6 + X(n—1),2,(1),21
it implies that the result is true for k = 2.

Now we suppose the result is true for some k£ > 2. By Lemma 2.1.3, we have
T 7 n n
i) = Wi+ (" Je-24 () o)

T

Hence, by using this, for all 7 > 1, 3" d(nj_1,4).0,1).0 = () (n—71) = (1) (r+1)
=0

and Z[ (n—if)o2.0 + dnj1j1),0.00] = (TH)T we get the following:

e (Nigre) = e (New) + (1)) (k= 2) + (5)

k—1
= " (Niy) + Z[ (n—if)z.2e T dnj-1j1).000] + 2 dnj-14).0)0

— j=0

= dw)oee + Z (k—J—Dldun-jpeset+ dn-j-151)020
j=1

k—1
+ Z:()(k - j)d(nfjflvjxg’(l)v@
]:

Thus the result is true for any k > 2. O]

Theorem 2.3.7. For k > 2, we have

. k_3 .
1. X?L”(Nk,*) = X(n),2,2,2 + Zl(k —J]— 2) [X(n—j,j),@,@,@ + X(n—j—l,j,l),@,@,@}
j=
k—2 )
+ 2 (k= J = DXn—j-1.j),2,1).2/
=0
3k — 11k + 14

2. 19" (Ny.) =

2

Proof. The proof is similar to the proof of Theorem 2.3.3. By the previous remark,
we have, for any k > 2,

. k=3
C%M(Nk,*) = d(n),@,@,@ + Z (k —J— 2)[d(n—j,j),@,®,® + d(n—j—l,j,l),@,@,@]
j=1

k—2

+ Z%(k —J = Ddn—j-1,),0,0)2-
]:

It is clear that m(,) 5,0,z = 1. In order to prove the wished decomposition for

97 ( Ny« ), we shall prove that the irreducible characters X (—j.).0,2,2+ X(n—i-1,,1),,2,

Xn
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and X (n—t—1,1),2,(1),2, for 1 < j,I <k—3and 0 <t < k—2, appear in the decomposi-
tion of the *-graded cocharacter x9"( Ny ) with multiplicity m,—; ) z.0.0 = k—j—2,
Mn-1-111),2,2,0 =k —1 —2 and m@p_y_1,1),2,1),0 = k —t — 1, respectively.

(1) Fixed 1 < j < k — 3, for the multipartition ((n — 7,7),d,a,d) and for
0 <p<k—j—3, we consider the multitableaux (2.3.5) given in Lemma 2.3.3
whose corresponding highest weight vector is

fr= Lt B e
» = Y10 Y1,0 " Y1,0Y2,0 - - Y2,0 Y1 0-
NS 7\ v
vV Vv

J J

By making the evaluation y1 0 = I + E and y29 = I + €13 + eap—2.21 We get

k—2 . P
n—2j—p p
To(Y1,0,Y20) = @ Z ( ; >€2kji2,2k + Z <z> €1,345+i;
i=0 i=0

with a and S non-zero values. Then, for any 0 < p < k —j — 3, f, is not a
(Zo, *)-identity of Nj .. Moreover, the same evaluation shows that these (k — j —2)
polynomials are linearly independent modulo Id9"*(Ny,.). Thus mgu,—j ;) oe0 >k —
j—2forany 1 <j<k—3.

(77) Now, fixed 1 <[ < k — 3, for the multipartition ((n — 1 —1,1,1), 2,2, &)
and 0 < p < k — j — 3, we consider the multitableaux (2.3.6) with the following
corresponding highest weight vector:

_ n—p—2l—-1_ _ = ~ o~ o~ - = D
9 = Y10 Y1,0° " Y1,0 Y1,0Y2,093,0 Y2,0 * - " Y2,0 Y10
——— ———

-1 -1

Evaluating y10 =1 + E, y20 = F and y3 0 = €13 + €2x_2,2%, We also get

k—2 : P
n—2j—p p
9p(Y1,0: Y20, Y3,0) = @ Z ( ; >e2kji2,2k + B Z (z) €1,3+j-+is
i=0 i=0

with o and 8 non-zero values. Thus g,, for any 0 < p < k — j — 3, is not a (Zy, *)-
identity of Nj . and these (k — [ — 2) polynomials are linearly independent modulo
Id"*(Ny.). Hence, we have mg,—i_1,1) 00 > (k—1—2), for any 1 <[ <k —3.

(73) Finally, fixed 0 < t < k — 2, for the multipartition ((n —t —1,t), &, (1), @)
and for 0 < p < k—j—2, we consider the multitableaux (2.3.7) and its corresponding
highest weight vector

h o n—p—2t—1 _ = — =
p» = Y10 Y10 Y1,021,0Y2,0 - Y20 Y
N TV - N Vv 7

t t

70'

By making the evaluation y, 0 = I + E and 219 = €19 — €g5—1,2, in case t = 0,
and y10 =1+ F, y20 = F and 219 = e12 — egp—1,2; otherwise, we get

k—2 ) P
n—2j—p p
hy(Y1,0, Y20, 210) = @ Z ( ; )€2kji1,2k + 8 Z (z) €1,245+i;
i=0 =0
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with a and 8 non-zero values. Thus m(,—¢—14),2,1),0 > (kK —t —1), for any 0 <t <
k — 2, since hy, is not a (Zs, x)-identity of N, for all 0 < p < k —t — 2, and these
(k —t — 1) polynomials are linearly independent modulo Id?"( Ny, ..).

Hence, by the previous remark, x9"*(Nj..) has the wished decomposition. Tt is

. 3k? — 11k + 14
easy to show that (9" (Ny.) = 5 + : O

We will omit the proof of the following theorem, since we can prove it similarly
to the proof of Theorem 2.3.7.

Theorem 2.3.8. For k > 3, we have

, k—2 .
1. X%M(Uk,*) = X(n),2,0,0 T Z (k' —J]— 1) [X(nfj,j),ra,@,z + X(n—j—l,j,l),@,ra,@}

j=1
k-3 ]
+ Zo(k; - J - Q)X(n_j_lvj)7®7(1)7@7
]:
, 3k* — 9k + 8
2. 197 (Uy,,) = %

Now, we explicit the sequences of x-graded cocharacters and of x-graded colengths
of the minimal varieties vard™(A) C vard™(M9™).

We start by computing the *-cocharacters and the *-colengths of the minimal
varieties var?™ (A7), for k > 2. In order to demonstrate the decomposition of the
X (A9, for any k > 2, we need to prove the following results.

Lemma 2.3.9. For the x-superalgebra AY", we have

1. XZ”(A%M) = X(n),0,0,0 T 2X(n—1),(1),®,® + 2X(n—1),®,®,(1)7
2. 19 (A" = 5.

Proof. By Lemma 2.2.5 we have ¢9"'(AJ") = 1 + 4n. We notice that

d(n%@,g,@ + 2d(n_1)7(1),g7® + 2d(n—1),®,®7(1) - ]. + 4n - CZ”(A“(QJTZ)

Let us consider the following highest weight vectors associated to the multipar-
tition ((n — 1), (1), d, ) and their corresponding multitableaux:

(T2 Tn—2Tn-1], [a], 2, 2 )and fi = yi5 91, (2.3.12)

(I3[~ Tn=1[n], [1], 2, 2 )and fo = y1.1y}, - (2.3.13)
It is clear that, by making the evaluation y; o = €11 +e44 and y;1 = €12 +e34, We get

fl(yLo,yLl) = €12 7A 0 and‘fg(y1,o,y1,1) — €34 ?é O ThlS 1mp11es that f1 and fQ are
not (Zs, *)-identities of A" and these polynomials are linearly independent modulo

]dgri(A‘g”). So m(n,l),(l),g@ Z 2.
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On the other hand, consider the following highest weight vectors associated to
the multipartition ((n — 1), @, @, (1)) and their corresponding multitableaux:

(A2 ~[rn-2]n-1], o, 2, [»])and gy = yi'; 211 (2.3.14)

(EE [ In-iln], 2, 2, [1])and go = 21,1975 (2.3.15)

By making the evaluation y; o = €11 +e44 and 211 = €12 — €34, we get g1(v10, 211) =
e12 # 0 and ga(y1,0, 21,1) = —esz4 # 0. Then it implies that g; and g, are not (Zs, *)-
identities of A" and these polynomials are linearly independent modulo Id9"*( AJ™).
S0 M(n—1),2,0,1) = 2.

Thus, we finally have X%”(Ag”) = X(n),2,2,6 T 2X(n=1),(1),2,2 T 2X(n—1),2,2,2,(1) and
1971 (AY™) = 5.

O
Remark 2.3.10. Let kK > 2. Then

. . k—2 ‘
' (A) = dmeee ZD 2(k = j = Dldn—j-15).0).2.2 T dn-j-15).2.0,1)]
]:

Proof. We will use induction on k. By Lemma 2.3.9, we have
XIrH(AY) = X(n),2,2,8 T 2X(n-1),(1),2,2 T 2X(n—1),2,2,(1)

it implies that 9" (AJ") = dm),o,0,0 + 2dm-1),01),0,6 + 2dn-1),2,0,1) 0 the result is
true for k = 2.

Now, we suppose the result is true for some k > 2. By Lemma 2.2.5, we have
(ATL) = (AT +4( ) (= k4 1)

S k=1 k=1
= (A7) +2 EO din—jj-1)0.2,0) + 2 20 din—jj-1).1).2.2
J= J=

E—1
= dm)ooe t+ Zo 2(k — j)[d(n—j—l,j),(l),@,@ + d(n—j—1,j),@,@,(1)]
J:

k—1 -
by using Zdn] 1,)),0.0,( Z (n—j—1,4),(1),0,0 = (kﬁl)(n—k—l—l). Thus, the
result is true for any k > 2. O]

Now we are in position to compute the *-graded cocharacter and the *-graded
colength of A", for any k > 2.

Theorem 2.3.11. For k > 2, we have

o k—2 '
1 XT(AY"Y) = X(m)o,0,0 + ZO 2(k — 7 = D[X(n—j-1,4),0),.2,2 + X(n—j—1,),2,2,(1))
]:
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2. 19 ALY = 2k% — 2k + 1.

Proof. By the previous remark, we have, for any k > 2,

k—2

Cglri(Azri> = d(n),@,@’g + Z:O (k _j - 1)[d(n_j_17j)7(1)7®’® + d(n—j—l,j),@,@,(l)]
J:

It is clear that m,) s 0o = 1. In order to prove the wished decomposition
for X%”(Azri), we shall prove that the irreducible characters x(,—i—1,)1),0,0 and
X(n—t—1,),2,2,(1), for 0 <t < k — 2, both appear in the decomposition of the cochar-
acter x4 (A7) with multiplicity m,—i—1.4),1),2,0.6 = Mn—t—1,4),2,0,01) = 2(k—t—1).

Fixed0 <t<k—2and for 0 <p<k—j—2and w=n— p, we consider the
following pairs of multitableaux:

_ p+1 p+t 1] [p[p+t2t+2] [ n]
(1T ) = (et AFEIE2N

(DT ) = (e e P e e ) )
(2.3.16)

Now, for the multipartitions ((n—t—1,t),(1),@,9) and ((n—t—1,t),9,2, (1))
consider the highest weight vectors
Ip= yf,o Y10 Y10 T Y20 “Y2,0 yiap_%_l

-~ -~

t t

corresponding to the multitableaux (1y,,7),,,d, @) and (T),, @, @, T}, ) according to

11 = Y11 OF T11 = 211, respectively. And consider the highest weight vector
_ . n—p—2t—1__ = - =
9o = Y10 Y1,0°Y1,0T1,0 Y2,0 * - Y2,0 Y10

-~ -~

t t

corresponding to the multitableaux (1},,7),,d, @) and (T),, @, &, T,,) according to

M2
T11 = Y11 OF T11 = 21,1, respectively.

By making the evaluation y10 = ey + epor + F, yo0 = E (when t > 0),
Y11 = €12+ eap_12r and 219 = €12 — €91 2k We get fp<y1,07 Y2,0, 1U1,1) = Q€ok—t—p—12k
and gp(yl,Oa Y2,0, 951,1) = /Bel,t+p+17 with o # 0 and 8 # 0, for T11 =Y110rT11 = 211-
Thus, mu—i1-14),0),0,0 = 2(k —t — 1) and mp——1,4),0,0,1) = 2(k —t — 1), for any
0 <t < k—2,since f, and g, are not (Zs, *)-identities of A7 forall 0 < p < k—t—2,
and these 2(k — t — 1) polynomials are linearly independent modulo Id9" (A7),

i (&) k=2 .
Since ¢#"(A7") = dn),2,2,0 + Zo 2(k—j— 1)[d(nfj71,j),(1),®,z + d(nfjfl,j),z,z,(l)L
]:

we conclude that X,%”(Aiﬂ) has the wished decomposition. It is easy to show that
1971 (AY™") = 2k* — 2k 4+ 1,Vk > 2, and the result is proved. O

Finally, we study the x-graded cocharacter of the minimal *-superalgebras IV gri
and UJ" for any k > 2.



CHAPTER 2. THE APG NONCOMMUTATIVE %-SUPERALGEBRAS 57

Lemma 2.3.12. For the %-superalgebras N and U™, we have

1. eri<Nggri) = X(n),2,0,8 T X(n-1),2,2,(1)
2. XZ”<U§M) = X(n),2,2,2 T X(n-1),(1),2,9>
3. 1N = lgri(Ug") = 2.

Proof. Let us consider the algebra Ng”. The arguments are similar for UY™. By
Lemma 2.2.1 it is known that ¢#"*(NJ™) = n + 1 and notice that we have

diny 200+ din-1)p00) =1 +n =" (N").

We also have m ) g,z = 1. Consider f = yﬁglzl,l the standard highest weight vec-
tor corresponding to the multipartition ((n—1), @, @, (1)). By making the evaluation
yLO = ] and 2171 = €19 — €34, WeE get f(y1,0721,1) — €12 — €34 and SO f g Idg”<N2gm)
and this implies that m,—1)z.,1) = 1. Hence, by comparing the codimension, we
must have x7"#(NJ™") = X(n),2,2,.6 T X(n-1),2,2,(1) and 197(NJ™) = 2.

]
Now we may explicit the decomposition of the x-graded cocharacter of N, ,f” and
U™ for any k > 2. The computations are similar to the ones in Theorem 2.3.7.

Theorem 2.3.13. For k > 2, we have

A i k=3 ' k—2 .

1' XTgZTZ<N]? ) = X(TL),@,@,@+Z:O(k_j_2)X(n—j—1,j),(1),®,@+Z:()(k_.j_1>X(7‘L—j—1,j),@,@,(1);
J= J=
k—2 k=3

2. Xg (U™ = X(n),@,z,@+Zo(k_j_1)X(n—j—1,j)7(1),®,®+Z%(k_j_2>X(n—j—1,j),®,@,(1)7
J= J=
3. 19 (NI =197 (UP"™) = k2 — 2k + 2.

We end this section by collecting the x-superalgebras with small x-graded
colength that appear in this chapter. We observe that 19(Ny,) = 197(U™) =
197 (NY™) = 2 and 197 (Ay,) = 197(AJ™") = 5. Also, for all k > 2, the *-superalgebras
Nisor Uy Ay NI UP™ AT and any direct sum of two distinct #-superalgebras
among them have x-graded colength greater than 3.
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Chapter 3

x-Superalgebras with small
colength

The study of the subvarieties of the commutative APG *-superalgebras varf™(D,)
and vard™(DI) has already been done in previous situations and in different con-
texts.

In this chapter, we recall the classification of the subvarieties of vars™(D,) and
varf"(DI7) given in [21, Theorem 7] and [20, Theorem 8.3] in the specific cases of
varieties of algebras with involution and varieties of superalgebras, respectively.

Here we establish the results about those subvarieties in the s-superalgebra lan-
guage and, as a new contribution, we classify all subvarieties of vard™(D9). We
also compute the x-graded colengths of all minimal subvarieties of the commutative
APG x-supervarieties considered above, based on the decomposition of the x-graded
cocharacter of each one of them.

We will use the results proved here and the results contained in Chapter 2 to
demonstrate the main result of our thesis, that is to classify the x-superalgebras
with x-graded colength bounded by three in the last section of this chapter.

3.1 Subvarieties of the APG commutative x-super-
varities

The x-superalgebra D, is the algebra D = F'@F with trivial grading and endowed
with the exchange involution (a,b)* = (b,a). So it is not difficult to see that the
classification of *-superalgebras, up to Ty-equivalence, inside var?"*(D,) and the
classification of the %-algebras inside var*(D) are equivalent. This last classification
was done by La Mattina and Martino in [21, Theorem 7).

Next, we present the x-superalgebra C}, ., which generates the only minimal sub-
variety of vard™(D,) and restate the results in [21] in the language of *-superalgebras.
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In the end of this section, we exhibit the decomposition of x,,(Cy .) and compute its
x-graded codimension.

For k > 2, we denote by [, the k x k identity matrix and consider the matrix
k—1
Ey =" €41 € UT}, where e;-js are the usual matrix units.
i=1
We denote by C} . the commutative subalgebra of UTj,
Cr = {ady + Z Bl | a,a; € F}

1<i<k

with trivial grading and endowed with the involution given by

1<i<k 1<i<k

For instance
a 0 ¢ O 0 b 0 d
0 a 0 ¢ _ 0 05b 0
(Ca™" =10 g a0 | ™ (GBI =] 5 g4,
0 0 0 a 00 00O

Recall that Id9"(D.) = (y1.1, 211, [Y1.0, ¥2.0), [Y1.05 21.0), [21’0’2270]>.T2* and notice
that Cy . satisfies all (Zo, *)-identities of D.. Hence Ci. € varf"(D,). Below
we present the (Zo, x)-identities and the *-graded codimension sequence of the x-
superalgebra C}, ., for all £ > 2.

Theorem 3.1.1. [21, Lemma 9] Let k > 2. Then

1. 1d (Cr) = (Y115 21,1, [Y1,00 Y20, [Y10, 210], [210, 220], 210+ 200) 75 -
; s 1 k-1
2. C?Lm(ck,*) = Z:O (]) ~ Wn .
‘]:

Proof. Let @ = (y1.1,21.1, [Y1,0, Y20 [¥1,05 21,0)5 [#1,05 Z2,0)5 21,0 - “Zk:,O>T2*- It is easily
checked that () C [ dg”(C’kv*), since (. is commutative with trivial grading and
(Ceh)k =o.

Let f be a (Zo, x)-identity of Cj . of degree t. Since the (Zo, *)-identities of
a unitary x-superalgebra follow from the proper ones, we may assume f is proper.
Now, if we reduce the polynomial f modulo (), we obtain f is the zero polynomial
itt > kand f = azg---zp0 if t < k—1. In the second case, if « = 0, by
evaluating z;,0 = 1, for all 1 <i <, we get f = aFl # 0, a contradiction, because
f € 1d7"*(C}..). Hence, we must have o = 0, and so, [d9"*(Cy.) = Q
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This also proves that in case ¢ < k — 1, the polynomial 2z;¢--- 2 forms a
basis of the multilinear proper polynomials of degree ¢ modulo [ d?"(Cy..). Hence
YW(Crs) =1for 0 <t <k—1and /" (Ck.) =0 for t > k. Then we get

(Ch) = ki C”)

J=0

Notice that, by Lemma 2.1.2, we have (%, ~1y No ..

Remark 3.1.2. Since D, is commutative with trivial grading, we may see the algebra
D, only with the involution algebra structure. Then if A € var?"(D,) we use the
[21, Theorem 3] to show that if ¢"/(A) is polynomially bounded then

A~y (Bi1@© ... @ Bp),

for some finite dimensional x-superalgebras B;,1 < ¢ < m such that dim J(Bé-) <1,

for all 1 < ¢ < m. It means that either B; = J(B;) is nilpotent or B; = F + J(B;).

So, in order to classify all subvarieties in var?"(D,), we just need to know what
happens with x-superalgebras of type F'+ J that satisfy the (Z, *)-identities of D..

Before proving that Cj . generates a minimal *-supervariety of polynomial
growth we need some results about *x-superalgebras of the type A = F + J.

Lemma 3.1.3. Let A = F'+ J be a x-superalgebra with J = Jy1 + Jio + Jo1 + Joo- If

A Satisﬁes the (ZQ, *)—Zdenmtl@S [y1707y2,0] = [2170,y170] = [yl,l,yl,(]] = {Zl,hyl,()] = 0,
then J10 = J()l = 0.

Proof. In fact, suppose that there exists a € Jl(g). Then we have a+a* is a symmetric
element and a* — a is a skew element, both with degree 0. Since [y10,%20] =
[210,¥10] =0 in A, we have [a +a*,1p| =a* —a =0 and [¢* —a,1p] =a*+a =0,
thus @ = 0. Hence Jl(g) =0 and Jé(lj) = (Jl(g))* = 0.

Similarly, we have Jl%) = Jéi) = 0. Hence A = (F + J11) @ Joo. O

Corollary 3.1.4. Let A= F+ J be a *x-superalgebra with J = Ji1 4+ J1g + Jo1 + Joo-
If A € var9™(D,) then Jyg = Jo = 0.

Lemma 3.1.5. For any k > 2, Cy . generates a minimal *-supervariety of polyno-

mial growth.

Proof. Suppose that the algebra A € var?™(C}.) generates a subvariety of var?™(Cy, )
and 9" (A) ~ gn*~1, for some ¢ > 0. We shall prove that in this case A ~13 Crx
and this will complete the proof.

By Remark 3.1.2 we may assume that

A=(B1®...® B,),
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where By, ..., B, are finite dimensional *-superalgebras such that dim-2i- < 1, for

J(B;)
all 1 <7 <m.

Since ¢d"(A) < ¢9"(By @ ... ® B,,), then there exists B; such that ¢7"(B;) ~
bn*~1, for some b > 0. Hence

var? (Cr.) 2D var? (A) D var? (F + J(B;)) 2 var? (F + Jy,(B;))

and ¢d"(B;) = ¢&"(F + J(B;)) ~ bn*~!. By Corollary 3.1.4, since F' + J(B;) €
vard™(D,), we get F + J(B;) = F + Ji1(B;) & Joo(B;) and & (F + J(B;)) =
I"(F + Ji1(By)), for n large enough. Then, we may assume that A is a unitary
algebra.

k=1 ,
Now, since ¢#"'(A) ~ qn*~! then ¢7"(A) = > (7)77"(A), and, by Proposition

=0’

1.3.7, we must have fy?”(A) # 0foralll < j < k—1.Since A € vary(Cy..), we have

YI"(A) < 47" (Che) = 1. Then 7" (A) = ¢@"(Cy,) for all n and so, A ~gy Cp.. O

At this point, we are in a position to classify the subvarieties of var?™(D,).

Theorem 3.1.6. [21, Theorem 7] Let A be a *-superalgebra such that vard™(A) C
var?"(D,). Then either A ~ry N or A~ps C®N or A~rps Cp ® N, for some
k > 2, where N s a nilpotent x-superalgebra and C' is a commutative x-superalgebra
with trivial grading and trivial involution.

Proof. If var9"(A) C wvard(D,), then ¢&"(A) ~ gn*~! for some k > 0, since
var?"(D,) has almost polynomial growth, by Theorem 1.4.5.

By Remark 3.1.2 we may assume that

A=B,®...® B,

where By, ..., B,, are finite dimensional x-superalgebras such that dim% <1,
for all 1 < i < m. If B; is nilpotent for all 1 < ¢ < m, then we have A ~r1; N.
Otherwise, by Corollary 3.1.4 we may assume B; = (F'4J11)@® Jy or B; is a nilpotent

x-superalgebra. Hence A=B, & ... B,, = B® N and
=l '
C%M(A) :c%ri(B) — (.)’}/?M(B),

for n large enough, where B is a unitary *-superalgebra.

If k = 1, then TY" C Id"(B), hence B is commutative with trivial grading
and trivial involution, and so A ~7; C @ N. If k > 2, we have Fi” C Id"(B)
then B € var?(Cy.). By Lemma 3.1.5, Cj. generates a minimal *-supervariety
of polynomial growth. Since ¢J"(B) ~ qn*! and ¢@"(Cy.) =~ ¢'n*~! we obtain

B ~Ty Ck’*, so A ~Ty Ck,* @ N. ]
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A consequence of the previous theorem is the classification of all the x-superalgebras
generating minimal varieties lying in the variety generated by D..

Corollary 3.1.7. [21, Corollary 3] A x-superalgebra A € vard™(D,) generates a
minimal x-supervariety of polynomial growth if and only if A ~1; Cy., for some
k> 2.

Next we describe the sequences of the x-graded cocharacter and of the x-graded
colength of the only minimal variety lying in var?™(D,).

Since D is commutative, any antiautomorphism of D is an automorphism, so D,
can be viewed as a superalgebra with grading (D(®, D) where D) = D = F(1,1)
and DU = D7 = F(1,—1). Thus the descriptions of the sequence of the *-graded
cocharacter and the *-graded colength of the minimal variety generated by Cj .
correspond to the descriptions given for the minimal variety generated by Cj of
var? (F @ cF), with ¢ = 1, proved by Nascimento, dos Santos and Vieira in [26,
Theorem 8.3]. Here we restate such results in x-superalgebra language.

N
—_

Theorem 3.1.8. /26, Theorem 8.3] For k > 2, X% (Cys) = Y Xwn—i)o,()e ond

<.
Il
o

197(Cy..) = k.

Proof. For any 0 < j < k — 1 we consider the highest weight vector fn = yi’y I 0
corresponding to the multipartition (A\) = ((n — j), &, (j),@). Since j < k—1,
evaluating y,0 = I} and 219 = E1, we get f) = E{ # 0 and so m((n—j),z,),2) 7 0,
forall j=0,...,k— 1.

Thus, by using Theorem 3.1.1 we have

k— k—1
Cgm Ck* Z Z _ Z(?) _ Cng'(Ck’*)'
7=0

J=0

We conclude that we must have m,—j)2,j),0) = 1, for all j =1,...,k and zero
in other cases. Hence -
X2 (Chs) = D X .i)2))-
§=0
As a consequence [9"(C}, ) = k and we finish the proof. ]

Now we study the subvarieties of the x-supervariety generated by D9, the
algebra D with the grading D9" = F(1,1) & F(1,—1) and trivial involution.

Since D9" is commutative with trivial involution, we can see D" only as a
superalgebra and we have var?" (DY) = vard"(F & cF), with ¢ = 1. Hence, the
classification of the x-superalgebras, up to TZ2-equivalence, inside varf™(DI") and
the classification of the superalgebras inside the var?"(F & cF), with ¢* = 1, are
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equivalent. This last classification was given by La Mattina in [20, Theorem 8.2].
Next we present such results in the language of *-superalgebras.

For k > 2, we have already considered the k£ x k identity matrix I, and the
k—1
matrix By = ) €;;11 € UTj, where €];s are the usual matrix units.
i=1
We denote by CY" the commutative subalgebra of UT},
Cy = {al), + Z E | a,0; € F},
1<i<k

with elementary Zy-grading induced by g = (0,1,0,1...) € Z% and trivial involution.

For example

a 0 ¢ O 0 b 0 d

0 a 0 ¢ 00 b 0
gry(0)\+ __ gry\()\+ _

0 0 0 a 0000

Remind that 1d9""(D9") = (21, 21,1)7; and notice that CY" € var?™*(D9"). The
following result shows the (Zs, *)-identities and the x-graded codimension sequence
of the *-superalgebra C}", for all k > 2.

Theorem 3.1.9. /20, Theorem 8.1] Let k > 2. Then
1. Idg”'(C;‘j’") = <21,0, 21,1, Y1,1 - - -yk,1>T2*~

k=l )
2. Ir(CY") = Zo (%) ~ et = oo
‘]:

Proof. First of all notice that since z1g,21; € [d9*(C{"), then we have
1,0, Y2.0], 1,0, Y1), 1,1, y21] € 1d7(CY"). Now let Q = (210, 21,1, Y11 - - -yk;,1>T2*'
It is easily checked that @ C Id9"*(CY{"), since CY" is commutative with trivial invo-
lution and (((C{")W)F)k = 0.

Let f be a (Zy, x)-identity of CY" of degree t. Since the (Zs,*)-identities of
a unitary x-superalgebra follow from the proper ones, we may assume f is proper.
Now, after reducing the polynomial f modulo (), we obtain: f is the zero polynomial
itt > kyand f = ayr1q---y1 it £ < k—1. In the second case, if a = 0, by
evaluating y;,1 = Fy, for all 1 <i <t, we get f = aFE! # 0, a contradiction, because
f € Id(C{"). Hence, we must have o = 0, and so, [d9"*(C{") = Q.

This also proves that in case ¢ < k — 1, the polynomial y;,---y:; forms a
basis of the multilinear proper polynomials of degree ¢ modulo 1 do"(CY"). Hence
WHCT)=1for 0 <t <k—1,and /" (C}") =0 for t > k. Then we get

e =3 (7).

=0 \J
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Notice that, by Lemma 2.2.1, we have C§" ~qy ugr.

In the next two results, we state that var?”*(C¢") is a minimal *-supervariety
of polynomial growth in vars™(DI") and give the classification of the subvarieties of
var?"(DI"). The proofs are very similar to the proofs of Lemma 3.1.5 and Theorem
3.1.6 and they will be omitted.

Lemma 3.1.10. For any k > 2, C}" generates a minimal x-supervariety of polyno-
maal growth.

Theorem 3.1.11. /20, Theorem 8.2] Let A be a *-superalgebra such that vard™(A) C
vard™(D9"). Then either A ~gz N or A~y CHN or A~p CF @& N, for some
k > 2, where N s a nilpotent x-superalgebra and C' is a commutative *-superalgebra
with trivial grading and trivial involution.

A consequence of the previous theorem is the classification of the x-superalgebras
generating minimal varieties lying in the variety generated by D9".

Corollary 3.1.12. /20, Corollary 8.2] A *-superalgebra A € var™(DI) generates
a minimal x-supervariety of polynomial growth if and only if A ~r; Cy", for some
k> 2.

We give below the descriptions of the sequences of x-graded cocharacters and of
*-graded colengths of the only minimal variety lying in var?"*(DI"). We have noticed
previously that these descriptions correspond to the ones for the superalgebra CY
given by Nascimento, dos Santos and Vieira in [26, Theorem 8.3].

k—1

Theorem 3.1.13. [26, Theorem 8.3] For k > 2, x9"(C{") = Z X(n—j),(j),2,2 and
=0

urCey) = k.

Proof. For any 1 < j < k — 1 we consider the highest weight vector fi = yfaj 3/{,1

corresponding to the multipartition (A\) = ((n — j), (j), @, 9). Evaluating y10 = I

and 11 = Ei, we get foy = B # 0, since j < k — 1 and s0 m(n—j),(j)0,0) # 0, for
all j=0,...,k—1.

Thus by using Theorem 3.1.9 we have

k—1 k—1
i r n I T
j=0 =0 \/
We conclude my(n—j),j),z,2) = 1, for all j = 1,...,k and zero in other cases.
Hence
k—1
Xa (C) = D Xm-iee) and so BM(CET) = k.

Il
o

J
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Finally we study the subvarieties of the x-supervariety generated by D9, the
algebra D with the grading F'(1,1) @ F(1,—1) and endowed with the exchange
involution.

For k > 2, we have already considered the k x k identity matrix I, and the
k—1
matrix £y = Y e; ;11 € UT}, where e;js are the usual matrix units.
i=1

We denote by CY" the commutative subalgebra of UT),

Cr ={alx + Z o El | a,a; € F}

1<i<k

with elementary Z,-grading induced by g = (0,1,0,1...) € Z% and endowed with
the involution given by

(ady + Z B = alj, + Z (—1)'y EL.

1<i<k 1<i<k

For instance

a 0 ¢ O 0 b 0 d

; 0 a 0 ¢ ; 00 b O
griy (0)\+ _ griy (1)) — _

00 0 a 00 0O

We know that [d(D9") = (z19,y11)7;. Notice that C{"* € vard™ (D).
Next we calculate the Tj-ideal and the *-graded codimension of CY"™.

Theorem 3.1.14. Let k > 2. Then
1. [dgri(C,‘jri) = (21,0, Y1,1, 21,1 - - - Zk,l>T2*-

. k—1
2 (O =S () = o
J:

Proof. First of all, notice that 210,711 € I1d*(C{"), then we have [y, ¥20],
(Y10, 211]s [21,1, 22.1] € A7 (CF™). Now let Q = (210, Y11, 21,1 - - - Zk,l)T,;' Since

(((C)O)7) = 0,(((CF) W) *) = 0 .and ((CF)™M) )" =0,
it is easily checked that Q C Id9"(CY"™).

Let f be a (Zy,*)-identity of C?™" of degree t. Since the (Zy, *)-identities of
a unitary x-superalgebra follow from the proper ones, we may assume f is proper.
Now, if reduce the polynomial f modulo () then we obtain: f is the zero polynomial
itt > k;and f = azip---2 ift < k—1. In this second case, if « = 0, by
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evaluating z;; = Ej, for all 1 <i <t, we get f = aE} # 0, a contradiction, because
fe IdQ”(Cg”) Hence, we must have a = 0, and so, IdgTZ(C’,g”) =Q.

This also proves that in case ¢ < k — 1, the polynomial z;;---2;; forms a
basis of the multilinear proper polynomials of degree ¢ modulo I d"(CY™). Hence
VO =1 for 0 <t <k —1 and 47" (CY™") = 0 for t > k. Then we get

k-1
gm gm ( )
j=0

J

Notice that, by Lemma 2.2.1, we have CJ" ~; N§™.
Next we prove that C’g” generates the only minimal x-supervariety of polynomial
growth in vard™(DI™).

Remark 3.1.15. We may see DI only as a Superalgebra by establishing DI =
D© @ DW | where D© = ((D9%)©)* and DW = ((D9)M)~. This way, we have
vard" (DI") = vard"(F @ cF), with ¢ = 1. Hence, the classification of the x-
superalgebras, up to T?2-equivalence, inside vars™(D9) and the classification of the
superalgebras inside the vary” (F @ cF), with ¢ = 1, are equivalent.

By using [4, Proposition 4], this equivalence also implies that if A € vard™(DI™)
has polynomial growth then

ANT; (Bl@@Bm),

for some finite dimensional *-superalgebras B;,1 < i < m such that dim-2i~ 7 B) <1,
for all 1 <7 < m. It means that either B; = J(B;) is nilpotent or B; = F + J(B;).

The next result is a consequence of Lemma 3.1.3.

Corollary 3.1.16. Let A = F+J be a x-superalgebra with J = Jy1+ Jio+ Jo1 + Joo.
If A € vard™ (DI then Jyg = Jo1 = 0.

Lemma 3.1.17. For any k > 2, C’g” generates a minimal x-supervariety of poly-
nomial growth.

Proof. By Remark 3.1.15, if A € var9™(CY™) generates a subvariety of vard™(C?™)
and c9"(A) ~ qn*~1, for some ¢ > 0, we may assume that

A:Bl@@Bm,

where By, ..., B, are finite dimensional x-superalgebras such that dim J(%-) <1, for
all 1 < ¢ <m.

Also, by the proof of Lemma 3.1.5 we can assume that A is a unitary algebra.
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k=1 ,
Now, since ¢?(A) ~ gn*~! then ¢7"(A) = > (?)7]9”(14), and, by Proposition
7=0
1.3.7, we must have 7¢"(A) # 0 for all 1 < j < k — 1. Since A € var?*(C{"), we
have VJQM(A) < 7]9”(072"’) = 1. Tt implies that c7(A) = ¢7(C{™) for all n, thus

A~y O m

Now we are in position to classify the subvarieties of vary™ (D).

Theorem 3.1.18. Let A be a x-superalgebra such that vard™(A) C vard™(DI™).
Then either A ~gy N or Ae~p CON or Ar~gy C,f”@N, for some k > 2, where
N is a nilpotent x-superalgebra and C is a commutative x-superalgebra with trivial
grading and trivial involution.

Proof. By Theorem 1.4.6, if var9™(A) C vard™ (D9, then ¢"{(A) ~ qgn*! for some
r > 0. By the Remark 3.1.15 we may assume that

A=B®...® Bn,

where By, ..., B, are finite dimensional x-superalgebras such that dim J%’i) <1, for
all 1 < ¢ < m. By using the same arguments as in the proof of Theorem 3.1.6 we

may write A=B,&...® B, =B& N and
k=1 '
) = ge) = 3 (1))

for n large enough, where B is a unitary *-superalgebra.

If k = 1, then T'Y"" C Id""(B), hence B is commutative with trivial grading and
trivial involution, then A ~7: C' @ N. If k > 2, this implies that I’i” C Id"(B),
and so B € var?(CY™). By Lemma 3.1.17, we have CY"* generates a minimal *-
supervariety of polynomial growth and since ¢ (B) ~ qn*~! and cfl”(C',gri) ~ ¢'nF!
we obtain that B ~gy Cf", then A ~p; C{™ & N. O

A consequence of the previous theorem is the classification of all the x-super-
algebras generating minimal varieties lying in varf™(D9I™).

Corollary 3.1.19. A x-superalgebra A € varg”(Dg”)'genemtes a minimal x-super-
variety of polynomial growth if and only if A ~qy C7™, for some k > 2.

Next we describe the sequences of x-graded cocharacter and of x-graded colengths
of the only minimal variety lying in var?™*(D9"). As we have noticed before, these
descriptions correspond to those ones for the superalgebra C} given by Nascimento,
dos Santos and Vieira in [26, Theorem 8.3].

E

~1
Theorem 3.1.20. Fork >2, Xx7(CY") =Y Xwu_jooy and E(CI) =k,
J

Il
=)
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Proof. For any 0 < j < k — 1 we consider the highest weight vector f, = yfaj 2{71
corresponding to the multipartition (A\) = ((n — j), 9, @, (j)). Since j < k — 1, by
evaluating y1 0 = I, and 21, = Ey, we get fiy = B # 0, and s0 m((n—j)z,2,i)) # 0
forall j =0,...,k—1.

Thus by using Theorem 3.1.14 we have

ol
=
bl
=

i T — — n i i
GM(C) 2 ) dim-poei)) = ( ) =" (CF).
5=0 =0 \/
We conclude that m(,—j),2,0,;) = 1, for all j =1,... k and zero in other cases.
Hence
XTHCE™) = X(m-jrow.ay andso 17(CL) = k.
5=0

3.2 Some x-superalgebras with small x-graded co-
length

For k > 1 we denote by G} the Grassmann algebra with 1 on a k-dimensional
vector space over F', i.e.,

Gk = <1,€1, Ce ,ek]el-ej = _ej€i>-

We write Gy, to mean Gj, with trivial grading and write G} to mean Gy with
canonical grading.

We also consider three involutions on Gy denoted by 7, 1) and p defined by
T —e, Wieg— e and pie; e (—1)'e,

for all 1 <i < k. We denote by Gy, and G9, the algebras G, and G, respectively,
endowed with the involution * = 7, * = ¢ or * = p. Observe that Gy, and G3, are
x-superalgebras if x = 7, x = ¢ or x = p.

The algebra G5, was initially studied by La Mattina and Misso in [22, Lemma
16] as an x-algebra, where the authors calculated its T*-ideal and its *-codimension.
After in a joint work with La Mattina and Vieira [23], we describe the *-cocharacter
of Gy, and study the *-algebra G5 .. Here we present such results in *-superalgebra
language.

Lemma 3.2.1. For the x-superalgebras Gy, and G3, we have

1. 1d7(Gar) = (Y11, 21,1s W10, Y2.0) [Y1.0: 220, 21,0220 + 22,0210, 21,022,023,0) 155
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. —1
2. I"(Gyr)=1+n+ %;

8. XT(G2r) = X(n),2,0.0 + X(n—-1)0,1),2 + X(n—2),,12), and 157 (Gar) = 3.
4 [dg”(G:a,r) = (Y1,1, 21,15 [¥1,0, ¥2.0); [U1,0, 22,0, 21,0220 + 22,0210, 21,02’2,023,024,0>T;;

nin—1) n(n—1)(n—-2)
S 6 /

5. d"(Gs,) =1+n+

6. X3 (G3r) = Xmooo + Xo-1.00.0 T Xn-20020 + X308 and
(G r) = 4.

Proof. We will prove the results about the *-superalgebra G5, and, using similar

argument, we can prove the results about Gs ;.

Let I = <Z/1,1, 21,1, [yl,Oa y2,0]7 [?Jl,o, 22,0], 21,0%2,0 1 22,021,0, 21,02’2,023,0>T;- By noticing
that (Gg’)l)+ = spanp{1} and (Gg?l)* = spang{ej,es, e1e2}, we can check that
I C Id*"(Gs,,). Moreover, we can see that the polynomials

Y10 Ynos Y1,0° Y0 Yn,0%i,00 Y1,0°Yi0 " Y0 Yno0Zi0Z0, 1 <1< j<nm,

generate P9 (mod PY"* N I). We claim that they are linearly independent modulo
I1d"(Ga,r).

If f € P9 NId"(Gy,) is a linear combination of the above polynomials,
by multihomogeneity of T5-ideals we may write that either f = ay10- - Yno, OF
[ = Byl,o ***Yn—1,0%n,0, O [ = 591,0 * Yn—2,02n—1,0%n,0- If we evaluate Y0 =...=
Yno = 1 we get @ = 0. If we evaluate y10 = ... = yp—10 = 1, 2,0 = €1 we have
B = 0. Finally if we evaluate y10 = ... = Yn—20 = 1, 2n—10 = €1, 2n0 = €2 We obtain
§ = 0. Then this implies f € Py NI and so 1d9"*(G,,) = I. This also proves that
the above polynomials form a basis of P¢"(mod P¢" N Id9"(G3,.,)) and so

| —1
I(Gyr) = 1+n+ %

In order to prove that XZ”(GQJ) = X(n),2,0,0 T X(n-1),2,01),2 + X(n-2),2,(12),2, W€
start by noticing that

nin—1 )
dn)2,0,.0 + din-1),2,0),0 T dn-2)0,12),0 = 1 + 1+ nln—1) 5 ) =" (Gay).

Then, since M)z 0,0 = 1, we just need to find a highest weight vector for each
multipartitions ((n — 1), @, (1), @) and ((n — 2), @, (1?), @) which is not a (Zy, *)-
identity of G+, to conclude that X%”'(ng) has the wished decomposition.

In fact, let f = yﬁalzl,o and g = yng[zLo, 220] be the highest weight vectors asso-
ciated to the multipartitions ((n—1), @, (1), @) and ((n—2), &, (12), @), respectively,
and corresponding to the multitableaux:

(OTE=Ta=1], o, (@], @ ) and ( (T2 Ta=2], o, 2, o ),
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By evaluating y10 = 1,210 = e; and 29 = €3, we get f = e; # 0 and g = 2e1e3 #
0; then f and g are not (Z,, *)-identities of Go, and the proof is complete. n

Next, we study the x-superalgebra G5 endowed with the involution 7, ¥ and p.
We have the following:

Lemma 3.2.2. For the algebra G5 we have

1. Id7(GY) = (Y115 210220, 2102115 (Y10, 2,00, [Y1.05 2105 21,1221 F 201211, 21,1 22,1 23.1) 75

A —1
and ¢ (GY) =1+ 2n + —n(n2 );

2. X3(G5) = Xmeess + Xa-De0).e T Xan-1000) T Xn-2e02 ond
A

3. 1d7(GY',) = (21,1, 21022,05 2100115 [Y1.0, Y2005 [Y1.0, 210]5 Y1.1921+Y2191.1, Y1.1Y2,1Y3.1) 75

o ar nn—1
and " (G5,) =1+ 2n + nin—1) 5 );

4- XZ?Z(G“ZT) = X222 T Xn-1),1),22 T Xn-1),2,2,1) T X(n—2),1),2,1) and
7(GE,) 4

5. 1d9"(GY) = (21,0, 21122,1, Y11Y2,1, W10, Y1), W0, 201)s y1a201 + 20101001y and
Gy = 1+ 20+ M,

6. %ﬁ"i(Gé’fw) = Xm),o,0,0 T X(n-1),1),2,6 T X(n-1),2,2,1) T X(n-2),1),,1) and
1 (Gs,) = 4.

Proof. First we consider G§. and notice that we have ((G§,))* = spanp{1},
((GgTT)(O))i = SpanF{6162}7 and ((Gg;’)(l))i = SpanF{ela 62}‘

Let J = (y1,1, <1,022,05 #1,071,1, [y1,o, y2,0], [yl,o, Z1,0], 21,1221t 22,121,0, 21,122,123,1>T2*~
We can see J C 1d9" (G4 ,) and that the polynomials

Y10 Yn0, Y1,0° " Yi,0 " " Yn,0%i,05 Y1,0° " Yi,0 " " Yn,02i,15, Y1,0° " Yi0 " Y50 Yn,0%5,1%5,15

1 < i < j < n, generate P9""(mod P9 N J). We claim that they are linearly
independent modulo Id"*(GY,).

If f € Py N Id*(GY) is a linear combination of the above polynomials,
by multihomogeneity of T5-ideals we may write that either f = dyio---yno or
f= aY1,0*** Yn—1,02n,0, O f= 53/1,0 *Yn—1,0%n,1, OT f= YY1,0 - Yn—2,08n—1,1%n,1- If
we evaluate y10 = ... = ypo = 1 we get 6 = 0. If we evaluate y10=... = yYp_10 =
1, 2,0 = €162 and 2,1 = e; we have o = 8 = 0. Finally, if we evaluate y;90 = ... =
Yn—20 = 1,211 = €1, 2,1 = €2 we obtain v = 0. Then this implies f € PIinJ
and so 1d9""(Gy,) = J. Moreover, this also proves that the above polynomials form

| e , i
A basis of P2 (mod P21 1 (GE,)) and so 7(G,) = 1+ 20+ ")



CHAPTER 3. *-SUPERALGEBRAS WITH SMALL COLENGTH 71

In order to prove that Xz”(ng;) has the wished decomposition, we start by
noticing that

n(n—1 v
d(n),2,2,5+dn-1),2,0),2 +dn-1),0,0,0) +dn-2)00,12) = 1+2n+% =c(GY).

Then, since M) z.06 = 1, we just need to find a highest weight vector for
each multipartitions ((n—1),a,(1),92), ((n—1),2,2, (1)) and ((n—2), s, 7, (1?)),
which is not a (Zg, *)-identity of G, to conclude that x§*(G9,) has the wished
decomposition.

We consider f = y’ﬁalzl,o, g = yiglzl,l and h = yff[zlyl,zzl], the stan-
dart highest weight vectors associated to the multipartitions ((n — 1), 9, (1), @),
(n—1),2,2,(1)) and ((n — 2),d,d, (12)), respectively.

By making the evaluation y190 = 1,210 = e1€2,211 = €1 and 291 = ey, we get
f=eea#0,9=-e; #0and h = 2e1e5 # 0; then f, g and h are not (Zs, *)-identities
of G/, and we have

XTU(GE) = Xtm),o,00 + X(n—1),2,(1),2 T X(n-1),2,2,1) + X(n—2),2,2,(12)-

We can easily prove the results about G, and G, by noticing that
(G5,) )" = spanp{1}, ((G5,)”)” = spanp{eies}, ((GF,)"M)T = spanp{er, es},
((Gg?‘p)(O))+ = spang{1, ejea}, ((Ggfp)(l))f = spang{e; }, ((ngﬂp)(l))Jr = spang{es},
and following the same arguments of the first part of this lemma.

[]

qri

Now we denote by G5} and ng”;' to be the *-superalgebra G with the grading
Go = (F14Fe;)®(Fey+Fejes) and endowed by the involution 7 and p, respectively.

Lemma 3.2.3. For the algebras ng“j and ng we have

1. Idg”(Ggfj) = (Y11, 21,022,0, 21,122,1, [Y1,0, Y2.0), [¥1,05 210, 21,0211 + 21,1210) 155

2. [dg”(ngZ) = (21,1, 21,0%2,0, Y1,192,1, [Y1,0, Y2,0], [¥1,0, 21,0]5 21,0921 + Y=121,0) 75

ri T4 ri T n(n B 1)
3. H(GE) = (G, = 1+ 20+ T,

4. Z”(Gg?) = X(n),2,2,2 T X(n—1),2,(1),2 T X(n—1),2,2,(1) T X(n—2),2,(1),(1)
5. %m(ng') = X(n),2,2,6 T X(n—1),2,(1),2 T X(n—1),(1),2,2 T X(n—2),(1),(1),&

6. 197(GY) = 197(GE) = 4.

2,p
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Proof. Similarly to the previous lemma, we can easily check these results by noticing
that

((ngﬁ)(o))* = spanp{1}, ((Gg?)(o))f = spanp{e; }, ((Ggfb(l))f = spanp{ey, €162},

((Gg,ﬁ)(o)ﬁ = SpanF{l}a ((Ggfff)(o))i = SpanF{el}7 ((Gg:;)(l)ﬁ = spanF{eQ, 6162}‘
]

Moreover, we also can obtain the following results.

Lemma 3.2.4. For the algebras Gy, ® Cs.., Gor ® CJ and Gar @ CJ™ we have

1. ¢ (Gor ®Cs,) =02 +1 and ' (Gar & CY") = ' (Ga, B CY') = %

2. X (Gar @ C4) = X(n),2,0,06 T X(n-1),0,(1),6 + X(n—2),2,02),0 + X(n—2),2,(2),2

3. gzri<G2,T S ngr) = X(n),2,2,2 T X(n-1),2,1),2 T X(n-2),2,12),0 T X(n—1),(1),2,2}
4. XIH(Gar @ CY) = X(n),2,2,5 T X(n-1),2,1),2 T X(n-2),2,(12),5 T X(n—1),2,,(1);
519 (Gar @ Cs,) = 19(Gor @ CY) = 19 (Gyr ® CY™) = 4.

We finish this section by presenting the x-superalgebra D, & D9 & DI whose
proprieties will be important in order to classify the x-supervarieties with *-colength
bounded by 3.

Lemma 3.2.5. For the x-superalgebra S = D, & D9 & DI we have:

1. 1d9(S) = (z10Y1.1, 21,0211, Y1.121.15 (Y10 Y2.0), [Y1.0 210, [Y1,0 Y1.1]s [Y1.0, 21.1],
Y11, Y2.1)s [21,0 22,0)s [21,15 22,1]>T2* ;

2. ¢I"(S) grows exponentially.

Proof. Let I = (21,0411, 21,0211, Y11%1,1, [Y1,0, 2,0 [yl,o, z10], [?{1,073/1,1], [yl,o, 21,1],
[yl,h y2,1], [21’0, 2270] {21’1, 22,1]>T2*- Since Idgm(S) = Idg?“z(D*)mfdgm(Dg’/‘)m[dgm(ng)

we have I C 1d"'(S). Let us check the opposite inclusion.

Let f be a (Zy, *)-identity of S. Since D" is an algebra with 1, we can assume
f is a multilinear proper polynomial of degree ¢t > 0. After reducing the polynomial
f modulo I, we obtain that either f = az19-- 20, Or f = ay11-- Y1, o [ =
azig---21. Denote by a = (1,—1) and, for all 1 < ¢ < ¢, make the evaluation
zio = (a,0,0),y,1 = (0,a,0),21 = (0,0,a) then we get o # 0 in all cases. Since
f € 1d7(S), we must have a = 0 and so Id?"/(S) = I.

It also proves that for all ¢ > 1 the polynomials {z10-- 20}, {y11-- W1},
{211+ 2.1} form a basis for the proper polynomials of degree ¢t modulo Id?"*(S).
Moreover, since D,, D", D97 lies in var?"*(S) and their *-graded codimensions grow
exponentially, it follows that ¢7"(S) also grows exponentially. O
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For all k,r,t > 1 the *-superalgebra Cy. & CY" @& C9" satisfies all (Zg, x)-
identities of D, ® D9 @ D9, In particular case, notice that C),,CY" and C{"
are T?2-equivalent to F. For example, we have Cy, @ CY" @ C9"" ~p2 CJ" @ CI,
Chw @ O @ CI" ~pz O @ CF and O @ OF @ CY" ~p2 Oy ® CfF for all
k,r,t > 1.

We establish the T2-ideal, the x-graded codimension and the *-graded colength
of this algebras in the following result.

Lemma 3.2.6. For all k,r,t > 1 we have

1. ]dgri(ck,* ¥ C{?T ) Of]”) = <]d9ri(S), 2107 2h0, Y110 Yel, 21100 zr,1>T2*;
i r ; k-1 t—1 r—1
2 (G el o) =1+ 5 ()+ X () + X ()
Jj=1 j=1 =1

. r . k-1 t—1 r—1
8. XI(Cre ® CY" @ CF) = EO X(n—i),2,(),2 T ZIX(n—j)xj),@,e + 21 X(n—3),2,2,()
= = =

and 19" (Cr. @ CY & CI"Y =k +t+1r— 2.

Proof. Let Q = (Id9"(S), 210" 2k.0, Y11 " Y1, 211" Zr1)Ty- 1t is easily checked
that Q C Id9"(Cy.. & CY" @& CI™).

Let f be a (Zy, *)-identity of Cj, . & CY" & C9™ of degree m. Since the (Zy, *)-
identities of a unitary x-superalgebra follow from the proper ones, we may assume
f is proper. Now, if we reduce the polynomial f modulo @), we obtain that: either
f is the zero polynomial if m > max{k,t,r}; or f = az19---2mo if m < k; or
f=ay1-ymaiifm<tior f=az1 - 2pm1ifm<r.

In the second case, if m < k and a = 0, by evaluating z; o = (£4,0,0), forall 1 <
i <m, weget f=a(E"0,0)# 0, acontradiction, since f € [d9(Cy .C{" &CI™).
Then we must have o« = 0 in the second case. The same result will be found in the
third and fourth case. Hence 1d9"*(Cy . & C{" & C9™) = Q.

This also proves that in case m < max{k,t,7}, those polynomials form a basis
of the multilinear proper polynomials of degree m modulo 1d9"*(Cy . & CY" & CI).

t

k—1 1 r—1
ciaeerscn ()£ ()5 0)
j=1

j=1 j=1

For any 1 < j < k — 1 we consider the highest weight vector fi\ = yiaj 2{70
corresponding to the multipartition (A\) = ((n — j), 2, (j),2). Evaluating y; 0 =
(1, 0,0) and 29 = (£1,0,0), we get finy = (E7,0,0) # 0, since j < k — 1 and so
M((n—j),2,G),2) 7 0, forall g =1,... k — 1.

For any 1 < j <t — 1 we consider the highest weight vector f;, = yfaj 3/{,1
corresponding to the multipartition (\) = ((n — j),(j), g, ). Evaluating y;o =
(0,1;,0) and y1,; = (0, E41,0), we get finy = (0, £7,0) # 0, since j <t —1 and so
m((n—7%),(4),2,2) 7§ 0, for all j = 1, cee ,t — 1.



CHAPTER 3. *-SUPERALGEBRAS WITH SMALL COLENGTH 74

For any 1 < j < r — 1 we consider the highest weight vector fi = yfaj 2{71
corresponding to the multipartition (\) = ((n — j), 2,9, (j)). Evaluating y,0 =
(0,0,1,) and 23 = (0,0, F), we get fiy = (0,0, E]) # 0, since j < 7 — 1 and so
mM((n—7%),2,2,04)) 75 0, for all ] = 1, BN 1.

Since m((n),z,0,0) = 1 and using the codimension, we may conclude that

k—1 t—1 r—1
X?er(ckﬁ" @ Ciqr EB CTgTZ) = Z X(n_j)vgv(j)vg + Z X(n—j),(j),@,@ + Z X(’I’L—j),@,@,(j)
=0 j=1 j=1
and so 9"(Cy. @ CY @ CI") =k +t+r —2. O

In particular case, we have the following x-graded colength
1979 (e B CF) = 17O B CY™) = 17 (Can @ C37) = 3, 17 (Cau @ CF & C4) = 4,

17(Coe @ CF) = 17 (Ca ® CF7) = 4, 17 (Ca & CF) = 127(CY" @ ) = 4 and
ri(Co,e @ ) = (CY @ CFT) = 4

3.3 The x-superalgebras with x-graded colength
bounded by 3

In the previous sections and the previous chapter we saw some *-superalgebras
with small *-graded colengths. For example: C,,, C§", C§™ are -superalgebras with
x-graded colengths equal 2, the direct sum of two distinct *-superalgebras among
them has *-graded colengths equal 3 and G ; also have x-graded colengths equal 3.

In this section we shall classify the varieties generated by finite dimensional
x-superalgebras with sequence of x-graded colengths bounded by three. The clas-
sification of the varieties of algebras with involution with sequence of *-colengths
bounded by three was recently made in [23], now we want to prove a result in case
of *-superalgebras that generalize the result obtained in [23].

In order to prove the main result of this thesis, we still need a few more lemmas
about x-superalgebras of type A = F' + J. Let us see what happens in this case.

Lemma 3.3.1. If A = F + J is a finite dimensional *-superalgebra where
J = Joo © Jo1 ® Jio ® Ju1.

1. [22, Lemma 1) If Ay, ¢ var™(A) then J0 = J\9 = 0.

2. If AL ¢ varemi(A) then J§) = J{V = 0.

Hence if Ay, A" & var9™(A) then Jyg = Jo = 0.
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Proof. First, suppose that there exists a € Jl(g) such that a # 0 and so a? = 0.
Let B be the subalgebra of A generated by 1x,a,a* and let I be the x-graded ideal
generated by aa*,a*a. Then we can verify that B = B/I is linearly generated by
1r,a@,a*. Notice that B has trivial grading and @ + a* is a symmetric element, and
@ — a* is a skew element. It is easily seen that B & Ay, through the isomorphism
¢ such that o(Ip) = €11 + eas, @(@) = e12, p(a*) = esq. Hence Ay, € var?™(A), a
contradiction. So we must have J{S) =0 and Jécl)) = (Jé?))* = 0 and the first part of
the lemma is proved.

Similarly, if there exists a € Jl((l)) such that a # 0 and so we also have a® = 0.
Let B be the subalgebra of A generated by 1r,a,a* and let I be the x-graded ideal
generated by aa*,a*a. Then we can verify that B = B/I is linearly generated by
1r,a,a*. Notice that @ + a* is a symmetric odd element and @ — a* is a skew odd
element. Then we can easily show that B = AJ" through the isomorphism seen in
the first part of the lemma. Hence A" € var?(A), a contradiction. So we must

have Jl(é) =0 and Jéi) = (Jéi))* = 0. O

In the classification of the *-superalgebras with x-graded colength at most 3, we
must exclude the *-superalgebras A, . and Ag”, since by Lemmas 2.3.1 and 2.3.9 we
have x9"(Ay,.) = X7 (AJ™") = 5. So from now on, we will study *-superalgebras of
the type F' + Jy;.

Lemma 3.3.2. Let B = F' + Jy1 be a x-superalgebra.

1. If C;\ & var(B), fori > 2, then ziy' =0 on B.
2. If CY" ¢ var(B), fori > 2, then y{;' =0 on B.

3. If C9" ¢ var9"(B), fori > 2, then Z7'=0on B.

Proof. We will proceed by the same way, in order to prove each item. First suppose
that there exists a € J under the condition of each item such that a*~! # 0 and
consider the subalgebra R of B generated by 1 and a over F'. Then if [ is the x-
graded ideal generated by a’, we have the algebra R = R/I has induced involution
and R = span{1,a@,a>,...,a@ '}. Thus, the correspondence

Tl—>€11+"'+€n’, arr e+t e_1;

defines an isomorphism between:
1. R and Cy,, if a € (J9)~. Hence C;, € var®i(B).

2. Rand CY" ifa € (Jl(}))f Hence CY" € var?"(B).

3. Rand C9", if a € (J\})~. Hence C9"" € var?(B).
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Lemma 3.3.3. Let B = F + Jy1 be a x-superalgebra.

1. If Uz, & vard™(B) then [y10,y20] =0 on B.

2. If N3, ¢ var?™(B) then [y10,210] =0 on B.

Proof. Suppose, by contradiction, that [y ¢, y2,0] Z 0. Let a,b € (Jl((l)))Jr be such that
[a,b] # 0 and consider the subalgebra R generated by 1,a,b over F, and let I be
the *-graded ideal generated by a?,b% ab + ba. So the *-superalgebra R = R/I is
linearly generated by {1,@,b,ab} and we claim that Id9*(R) = Id"*(Us.). Clearly
Y11 = 211 = 0, 210220 = 0 and [210,y10] = 0 are (Zy, *)-identities of R, and so,
[d(Us,.) C 1d7(R).

Let f € P9 N Id"(R) be a multilinear polynomial of degree n. Notice that we
can write f (mod Id"(Us,)) as:

f=0ayio - Yno+ Z ijYir 0 * Yin_.0[Yi0, Yj.0] + Z QilY51,0 " Yjn_1,0%i,05

1<i<j<n i=1

where i3 < 19 < --- < iy9 and J; < Jo < --- < Jn_1. By making the evaluations
Y10="""=yno=1land 2,0 =0fori=1,...,n, we get a = 0. Also, for a fixed i < j
the evaluation y;0 = @, y;0 = b, yro = 1 for k € {i,j} and zo=0for I =1,...,n,
gives ay; = 0. Finally, the evaluation z;o = [a,b], y;0 = 1 for j # i gives a; = 0.
Hence f € 1d9"(Us,), and so, Id9"(R) C 1d?"*(Us.). Thus Us, € vary*(B) and
the proof of the first part is complete.

The second part of the lemma is proved similarly. We suppose that there exists
a € (Jl((l]))Jr and b € (Jl((l)))_ such that [a,b] # 0 and consider the subalgebra R
generated by 1, a, b over F and let I be the »-graded ideal generated by a?, b%, ab+ba.
So the *-superalgebra R = R/I is linearly generated by {I,a,b,ab} and satisfy the
(Zs, *)-identities y11 = 211 = 0, 210220 = 0 and [y1,0, y2,0) = 0. Thus 1d9*(N3 ) C
Id (R).

By using the same arguments of the first part of the lemma, we can prove that
R ~7; N3, and so N3, € var9"(B). And the second part is also proved by contra-
diction. [

Lemma 3.3.4. Let B = F + Jy; be a x-superalgebra.

1. If U™ ¢ var9™(B) then [y10,y1.1) =0 on B.

2. If N§"" ¢ var9™(B) then [y10,21.1] =0 on B.

Proof. Suppose, by contradiction, that [y10,y11] #Z 0. Let a € (JO)+and b e (J)*
be such that [a,b] # 0 and consider the subalgebra R generated by 1, a,b over F' and
let I be the *-graded ideal generated by a2, b?, ab + ba. So the *-superalgebra R =
R/I is linearly generated by {I,@,b,ab} and we claim that Id9"(R) = Id9"(U$"™).
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Notice that @ € (Jl((l)))+,l_) € ((]1(}))+ and ab € (Jl(}))_, so it is clear that z;9 = 0,
11021 = 0, where x;1 = y;1 or x;1 = 21, for ¢ = 1,2, and [2171,y170] = 0 are

(Zy, *)-identities of R, and so, [dgTi(Ugri) C 1d"i(R).

Let f € P;‘f”f N Id’*(R) be a multilinear polynomial of degree n. We can write f
(mod Id9"*(UJ™)) as:

f=ayio - yno+ Z QiYir,0 ** Yin_,0[Yi05 Yj1] + Z QilYj1,0 ° " Yjn1,0%i,1;

1<i<j<n i=1

where iy < 19 < --- < 1,9 and J; < Jo < -+ < Jn,_1. By making the evaluations

Y10 = = Yno =1 and Yin = 21 =0 fo_r i=1,...,n, we get a = 0. Also, for a
fixed i < j the evaluation y; 0 = @, y;1 = b, yro = 1 for k ¢ {i,j}, and 2z, = 0 for
l=1,...,n, gives ay; = 0. Finally, the evaluation z;; = ab, y;o = 1 for j # i gives

a; = 0. Hence f € Id9"/(U{™), and so, Id9"*(R) C Id"/(U{"™). Thus UJ" € var?(B)
and the proof of the first part is complete.

The second part of the lemma is proved similarly, by contradiction. We suppose
that there exists a € ((]1([1)))4r and b € (J{))~ such that [a,b] # 0 and consider the
subalgebra R generated by 1,a,b over F' and let I be the %-graded ideal generated
by a?,b?, ab + ba. By using the same arguments of the first part of the lemma, we
can prove that R~z N§™ and so N§"* € vard(B). O

Lemma 3.3.5. If B = F + Jy; is a x-superalgebra such that

1. [21,0, Zz,o] % 0 then GQJ c Umﬂgm‘(B)‘
2. [21,1, 2’271] % 0 then Gg? c Um;gm‘(B)'

3. [Y11,y21] £ 0 then ng‘w € var?(B).

Proof. Generally, we start by considering a,b € J under the conditions of each item
such that [a,b] # 0. Let R be the subalgebra of B generated by 1,a,b and let I be
the *-graded ideal generated by a?,b?, ab + ba. So the *-superalgebra R = R/I is
linearly generated by {I,@,b,ab}. Thus, the correspondence

Ir—1, a—e, b e,

defines an isomorphism between:

1. Rand Gy, if a,b € (Jl(?))_. Hence Gy, € vard™(B).
2. Rand G, ifa,b e (JV)=. Hence GY'. € var?™(B).

3. R and Ggfw, if a,b e (Jl(}))f Hence Ggfw € vard™(B).
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Lemma 3.3.6. If B = F + Jy; is a x-superalgebra such that

1. y11211 # 0 then Ggfp € vare(B).

2. 210Y11 Z 0 then Gg:ﬁ c Umagm‘(B)'

3. z10211 Z 0 then Ggﬁ € vard™(B).

Proof. We start by assuming that the polynomial is not an (Z,, *)-identity for B, so
that there exist elements a,b € J under the condition of each item such that ab # 0.
After we consider R to be the subalgebra of B generated by 1g,a,band I to be the *-
graded ideal generated by a?, b, ab-+ba. Then R = R/I is a x-superalgebra linearly
generated by 1p,a,b,@b. Thus, the correspondence 1y — 1, @ — €1, b +— e,
defines an isomorphism between:

1. Rand GY',ifa € (JI)~ and b € (JJ)+. Hence GY', € var?(B).
2. R and ng, if a € (JY~ and b e (JV)*. Hence Ggf,j € vard"(B).

3. Rand G§}, ifa € (JY= and b € (J))~. Hence Gt € var9(B).

]

Lemma 3.3.7. Suppose that B = F' 4 Jy; satisfies the identity z1 0220+ 22,0210 = 0.
If 210200230 Z 0 then G3, € var?(B).

Proof. Consider a,b,c € (Jl((l)))* such that abc # 0. Let R be the subalgebra of B
generated by 1, a, b, c. Since 21 9220+ 220210 = 0 in R we have a® = b> = ¢ = 0 and
so R = span{1,a,b, c,ab, ac, bc,abc}. As a consequence, the correspondence

1—1, ar—re, b—ey, crres

defines an isomorphism between R and G ;. n

Lemma 3.3.8. Let B = F + Ji1 be a finite dimensional x-superalgebra such that
B € wvard(D, & DI @ D9). If ¢&"(B) ~ an', for some constant a, then
B~y Bi®By® Bs where By € var?(D,), By € var? (D) and B € var?™ (D).

Proof. Notice that F'+ Jl((l)) is a subalgebra of B. Moreover, by the (Zs, *)-identities
of D, & D9 @ D9 we can show that F'+ ((]1([1)))+ + (Jl(i))Jr and F 4 (JOY+ 4 (Jﬁ))*
are subalgebras of B too. So obviously we have

a7 (B) C I ((F + JY) & (F + (JID)" + (J1)D) @ (F + () + (1)),
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Conversely, let
feTam (F+ )@ (F+ () + () e (F+ (A7) + (1))
be a multilinear polynomial of degree n.

Since Id9"(D, @& DI @ D) C 1d"(B), we write f modulo Id?"*(B) as either

f — ayl,o N yn707 or f — O[p7qyi1’0 e yip,OZjhO e ijo, or f — Oép7qyi1’0 e y’ip,oyjl,l . yqu’
Or f = Qpqlir0° " Yip,0%j1,1" " Zjg,1, Where p+q=mn,i; < ... <ip,J1 <...</Jg

If f is of the first type, by making the evaluation y;o = 1p for all 1 < i <
n, we get « = 0 and so f € Id"‘(B). If f is of the other types, we also get

f € 1d7i(B), since f € Idi(F + J, f € Id(F + (JY* + (JI)H) and f €
147 (F + (JO)* 4 (JP)7). Hence, we have the equality

1d7(B) = Id((F + J\Y) @ (F + () + (I @ (F+ (D) + (J0)7).

Now since F + J € vare(D,), F + (JO)* + (JP)* € vars (D) and
F+ (JO* 4+ (JD)= € varei(DI7), we get the wished result. O

At this point, we are in a position to prove the main result of this section which
allows us to classify the varieties generated by a finite dimensional x-superalgebra
with x-graded colengths bounded by 3, for n large enough.

Theorem 3.3.9. Let A be an finite dimensional x-superalgebra over a field F' of
characteristic zero. The following conditions are equivalent.

1. 19"(A) < 3, for n large enough.

2- A2,*'7 Agm'7 N3,*7 N397'7;7 U3,*7 Ugria C4,*7 C£T7 C4QT'i7 G3,T7 Gg;—? ng;pa Gg,rp7 G‘gjza
Ggfpl, Gor®Cs4, Gor ®CY, Gor ®CY", C3,DCY, C3,DCY", Co®CY,
Cy @ Cy", Co.aCy", CY @& CY", Crn®dCy ©CY" ¢ vard™(A).

3. A is Ty-equivalent to N or C® N or Co, ® N or C3, ® N or C3" & N or
C{ &N orCy" &N orC{" &N or Cy, ®Cy &N or Cy, ®Cy" &N or
Cy & C;’” ® N or Gy ® N, where N is a nilpotent x-superalgebra and C is a
commutative non-nilpotent algebra with trivial involution and trivial grading.

Proof. First, notice that the condition (1) implies the condition (2) since by Lem-
mas 2.3.1, 2.3.9 and by Theorem 2.3.13 we have 19" (N{™) = 197(U$™) = 197 (A,.,) =
197(AJ™") = 5; by Lemma 2.3.5 and Theorems 2.3.7, 3.1.8, 3.1.13, 3.1.20 we have
19(Ny,) = 197 (Us,) = I977(C,) = 197(CYT) = 197%(CY™) = 4; by Lemmas 3.2.1,
3.2.2, 3.2.3 we have I97(G3,) = IJ"(G5) = I97(GY ) = 197(GY ) = 197°(GY) =
lg”(ngj) = 4 and by Lemmas 3.2.4 and 3.2.6 we also have [9"(Gy, & C3.) =
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iCy, @ CF) = WCY @ CfY) = 1(Ch, @ CFF) = I @ ) =
lg”‘(GQ’T D C2g7“) — lzri(GQ’T D Céqm> — lzTi<C2,* D Cg?“ D ngm> — 4

Also, the condition (3) implies the condition (1), since for n large enough we
have [9"/(N) = 0, [9"(C & N) = 1, by Theorems 3.1.8, 3.1.13, 3.1.20 we have
197(Co ® N) = 19"(CY @ N) = 19(C§" @ N) =2, 19(C, &N) = 19"(Cy ®N) =
197(C§" @ N) = 3 and by Lemmas 3.2.1 and 3.2.6 we get 197(Ga, ® N) = 19(Co, . @
Cyr@N)=1(Cy, ®CY" ®N)=1I(Cy ®CY" dN) =3.

Suppose now that the condition (2) is satisfied, it means that we exclude all
that twenty-five x-superalgebras from var9™(A). Since Cy, € vard(D,), C{" €
vard (D), CI" € ward (DI, Ay, € vardi(M,) and AY" € wvardTi(M9IV), it
follows that D,, D", DI M,, M9 ¢ var9"(A). Hence, by Theorem 1.4.9, the x-
graded codimensions of A are polynomially bounded. Since A is finite dimensional,
by Theorem 1.4.4, we may assume that

A=B1®---® By,

is a direct sum of finite-dimensional *-superalgebras where either B; is nilpotent or
B, =F+ J(B)).

If B; is nilpotent for all 7, then A is a nilpotent *-superalgebra and we are done
in this case.

Therefore we may assume that there exists i = 1, ..., m such that B; = F+J(B;)
and J(B;) = Joo @ Jo1 ® Jio ® J11-

Since Ay, AY" ¢ var9(B;), by Lemma 3.3.1, we have Jy;, = Jip = 0, and
so B; = (F + Ji1) ® Jyo is a direct sum of x-superalgebras. Then we study next
B = F + Jy1, since Jy is nilpotent.

Since Us., Ns., UJ", N§™, Gi., Gy, GY,, ngﬁ, ng”;' ¢ vars™(B), by Lemmas
3.3.3, 3.3.4, 3.3.5 (item 2 and 3) and 3.3.6, it follows that all these polynomials are
(Z2, *)-identities of B:

[y1,0, ?/2,0]: [91,0, 21,0], [91,07 yl,l]a [y1,0, 21,1]7 [y1,1, y2,1], [21,1, 22,1}7 21,1Y1,1, 21,0Y1,1, 21,0%21,1-
Now we have to consider two different cases |21, 220] = 0 and [21, 22,0] Z 0 on B.

Suppose that [z10, 200] = 0 then we have B € var?*(D, & D" & D), by
Lemma 3.2.5. Since B is also polynomially bounded, by Lemma 3.3.8, we must have
B ~g; B1®By® Bs where By € var?™(D,), By € var?* (D) and Bs € var?™ (D).
Now since Cy.,CY", Cy" Cs, ® CY", Cs,, & CJ",Cye @ C,CL D CY" Cy ® CL,
CY @ C" Cyy ®CY @ CY" ¢ var?(B), we must have that B is Tj-equivalent to
cither C' or Cy,, or C§" or C§"* or Cs,, or C¢" or CJ"* or Cy,, & CJ" or Oy, @ CY" or
g ey,

Now assume that 219, 220] #Z 0 on B. So Ga; € var?(B), by item (1) of Lemma
3.3.5. On the other hand, since Gy, ® Cs,, Gor ® CY, Gor ® CF" ¢ var?y™(B) we
must have Cs,,C3", CJ"™ ¢ var?™(B). Hence, by Lemma 3.3.2, 27 = y11 = 211 =0
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on B. After linearizing Zio = 0 we get 210220 + 220210 = 0 on B. Finally, since
Gs.. ¢ var'(B), by Lemma 3.3.7, we have that 219220230 = 0. Hence, by Lemma
3.2.1, Id9"(Gy,) C Id*(B) and it follows that B is Ty-equivalent to G,

Recalling that A = By & -+ & B,, and putting together all pieces, we get the
desired conclusion. O
In particular case, we have the following classification of the x-supervarieties
with x-graded colengths bounded by 2, for n large enough.
Corollary 3.3.10. Let A be an finite dimensional x-superalgebra over a field F' of
characteristic zero. The following conditions are equivalent.
1. 197 A) < 2, for n large enough.

gri grit gri qgr gri gr qgr gr
2. A2,*; Az ) NB,*; Ng ) U3,*7 U3 ) 03,*7 C'3 ) Cg ) G2,T7 G2,‘ra G27'¢v7 G2,p7
T4 T e T % i
G, Co®CY, Co ®CY", CF @ CY™" ¢ vard™(A).

2,p7

gri
GQ,T?

3. A is Ty-equivalent to N or CO N or Co, @ N or C§ @ N or C§" @ N, where
N is a nilpotent x-algebra and C' is a commutative non-nilpotent algebra with
trivial involution.

Proof. We easily see that the condition (1) implies (2) and the condition (3) im-
plies (1). In order to prove that the condition (2) implies (3), notice that since
Ag, AT Cs,, CFF CY ¢ ward™i(A), it follows that M,, M9, D,, D", D9 ¢ vard™(A).
Hence, by Theorem 1.4.9, the x-graded codimensions of A are polynomially bounded.

Moreover, notice that now we are excluding G, from var?(A), by item (1) of
Lemma 3.3.5, what implies that [21 ¢, 22,0] = 0 on A. Thus Ns.., NI Uy, US Gy,
Ccy, O3, Gan, GY, Gy GY, G2 GY) ¢ vard™(A) imply that A satisfies all

the (Zy, *)-identities of D, @& D" @ DI i.e., A € vary (D, & DI & DI™).

The rest of the proof is similar to the first part of the proof of previous theorem.
Since Cy, @ CY, Co, ® CJ", C§" © CY" ¢ vary(A), we will conclude that A is
Ts-equivalent to N or C @ N or Cy,, @ N or C§" @ N or CJ"" @& N, where N is a
nilpotent *-superalgebra and C' is a commutative non-nilpotent algebra with trivial
involution and trivial grading. O]

In conclusion, we have the following classification: for any finite dimensional
x-superalgebra A and n large enough,

L. 19"(A) = 0 if, and only if, A ~zr N.

2. 19"(A) = 1if, and only if, A ~; C® N.

3. 19"(A) = 2 if, and only if, either A ~pr Cyu & N or A ~pr C3" & N or
Ar~gy Cf" @ N.
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4. 19"(A) = 3 if, and only if, either A ~pr C3, & N or A ~pr C§" & N or
A~ G ®© N or A ~pp Gor @N or A ~pyp Oy @ CfF @ N or
A ~Ty 02,* 7] Cg” ®NorA ~Ty Cgr SP) Cg” b N,

where N is a nilpotent *-superalgebra and C'is a commutative non-nilpotent algebra
with trivial involution and trivial grading.



83

Final considerations

The theory of #-graded identities of finite dimensional *-superalgebras pre-
sented here generalizes the results for algebras with involution. In fact, if A is a
*-superalgebra with trivial involution, then ¢7*(A) = ¢} (A) and 19"(A) = [} (A).

In this thesis, we have classified the varieties generated by a finite dimensional
x-superalgebra A with x-graded colength bounded by 3 by excluding twenty-five
x-superalgebras from the variety generated by A and giving a complete list of finite
dimensional generating *-superalgebras.

In [23], a recent joint work with La Mattina and Vieira, we proved that:

Theorem 3.3.11. Let A be an algebra with involution over a field F' of characteristic
zero. The following conditions are equivalent.

1. I*(A) < 3, for n large enough.
2. A2,*7 NS,*; U3,>k7 04,*7 G3,’T7 G2,T S¥ 03,* ¢ UGT*(A)-

3. Ais T*-equivalent to N or C & N or Co, @ N or C5, & N, Gor & N, where
N is a nilpotent x-algebra and C' is a commutative non-nilpotent algebra with
trivial involution.

Notice that Theorem 3.3.9 generalizes this result, in finite dimensional case, as
expected. In fact, the algebras As ., N3 ., Us ., Cs s, Gs - and G, @ Cs , are the only
x-superalgebras with trivial grading that appear in the list of the excluded algebras
in Theorem 3.3.9.

In [3], Giambruno and La Mattina proved the equivalence between algebras
whose sequence of codimensions is bounded by a linear function and algebras with
colength bounded by 2. In case of superalgebras and algebras with involution, we
don’t have this equivalence (see [31], [23]). Consequently, this also happens in *-
superalgebras case. In fact, the algebras A, and A5 have *-graded codimension
bounded by a linear function but the x-graded colength of them is 5.

The classification of the algebras A of at most linear codimension growth has
already been made in [12] by loppolo and La Mattina, in language of algebras
with superinvolution. In that classification, the authors gave a complete list of
finite dimensional algebras with superinvolution generating the varieties of at most
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linear codimension growth. We would also like to know a classification by excluding
algebras with superinvolution from the variety generated by the algebra A.

For a finite dimensional *-superalgebra A, we consider its *-graded cocharacter

XTHA) = ) mpyxy
)

and we would like to classify finite dimensional x-superalgebras A such that the
multiplicities m ) are bounded by a constant K. Such classification has already been
given in the setting of algebras [24], superalgebras [27] and algebras with involution

[30].

We also would like to obtain a generalization for the Kemer’s result for PI-
algebra, that is, ¢,(A) is polynomially bounded if, and only if, the sequence of
colengths is bounded by a constant. Such equivalence has already proved in case
of finite generated superalgebras and finite generated algebras with involution by
Vieira in [31] and [30], respectively. It is clear that if [9"(A) is bounded by a constant
then ¢(A) is polynomially bounded. Now, we would like to know if the converse
is true.

Finally, it seems to be interesting to study algebras with G-graded involution,
that is, G-graded algebras endowed with a G-graded involution %, where G is a
group. In this case, we would like to produce similar results as we have in other
structures.
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